Challenges in Evaluation of Automatic Text Simplification

Fernando Alva-Manchego

© @feralvam
A https://feralvam.github.io/

Simplify Language - Capture Audience
24 September 2021

Outline

- What is (Automatic) Text Simplification?
- Preliminaries:
- Automatic Evaluation of Sentence Simplification
- Human Evaluation of Sentence Simplicity
- Meta-Evaluation of Automatic Evaluation Metrics
- Preliminary Study on Evaluation of Cross-lingual Simplification

What is Text Simplification?

Modify the content and structure of a text so that it is easier to understand while preserving its original meaning

Grade 6

Automatic Sentence Simplification

Slightly more fourth-graders nationwide are reading proficiently compared with a decade ago, but only a third of them are now reading well, according to a new report.
(Neural)
Simplification
Model

Sequence-to-Sequence Model

- Machine Translation
- Summarization
- Caption Generation

Fourth-graders are better readers than 10 years ago. But few of them read well.

How do you determine
the quality of an automatic simplification?
\qquad

Automatic Evaluation of Sentence Simplification

Standard Automatic Evaluation Pipeline

SARI (Xu et al., 2016)

$$
\begin{array}{r}
\mathrm{SARI}=d_{1} F_{a d d}+d_{2} F_{\text {keep }}+d_{3} P_{\text {del }} \\
d_{1}=d_{2}=d_{3}=1 / 3
\end{array}
$$

Input: About 95 species are currently accepted.

REF-1: About 95 species are currently known .
REF-2: About 95 species are now accepted .
REF-3: 95 species are now accepted .

Output-1: About 95 you now get in .
Output-2: About 95 species are now agreed .
Output-3: About 95 species are currently agreed. $\rightarrow 0.5890$
$\rightarrow 0.2683$
$\rightarrow 0.7594$

SAMSA (Sulem et al., 2018)

Assumption: In an ideal simplification each event is placed in a different sentence.

Original Sentence:

John arrived home and gave a call to Mary.

John arrived home

System Output:

John arrived home. John called Mary.

Readability Indices

- Flesch Reading Ease (Flesch,1948)

$$
F R E=206.835-1.015\left(\frac{\text { total words }}{\text { total sentences }}\right)-84.6\left(\frac{\text { total syllables }}{\text { total words }}\right)
$$

- Flesch-Kincaid Grade Level (Kincaid et al., 1975)

$$
F K G L=0.39\left(\frac{\text { total words }}{\text { total sentences }}\right)+11.8\left(\frac{\text { total syllables }}{\text { total words }}\right)-15.59
$$

Metrics used in Machine Translation

- BLEU (Papineni et al., 2002)

$$
p_{n}=\frac{\sum_{S \in C} \sum_{\text {ngram } \in S} \text { Count }_{\text {matched }}(\text { ngram })}{\left.\sum_{S \in C} \sum_{\text {ngram } \in S} \text { Count (ngram }\right)} \quad B P=\left\{\begin{array}{ll}
1 & \text { if } c>r \\
e^{1-\frac{r}{c}} & \text { if } c \leq r
\end{array} \quad B L E U=B P \times \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right)\right.
$$

- BERTScore (Zhang et al., 2020)

Human Evaluation of Sentence Simplicity

Simplicity Gain

Structural Simplicity

TurkCorpus

Likert Scale: -2 to +2

Is the output simpler than the input, ignoring the complexity of the words?

3 ratings per sentence pair

Simplicity-DA

Direct Assessment
\qquad
50

The Simplified sentence is easier to understand than the Original sentence

15 ratings per sentence pair

The (Un)Suitability of Automatic Evaluation Metrics for Text Simplification

```
Fernando Alva-Manchego*
University of Sheffield
Carolina Scarton*
University of Sheffield
University of Sheffield
Lucia Specia**
Imperial College London
```


Computational Linguistics

https://github.com/feralvam/metaeval-simplification

High Correlation = "Good" Metric?

Experimental Setting

- Study the behaviour of automatic metrics at the sentence-level
- Focused on metrics that measure (some form of) simplicity
- Analyse the variation of correlation w.r.t.
a. Simplicity levels
b. System type
c. Set of manual references
- Metrics
a. SARI, SAMSA, FKGL, BLEU, BERTScore
b. Averages of BLEU, SARI, SAMSA

Metrics across Simplicity Levels

Low scores indicate "bad" quality of a simplification, but high scores do not necessarily imply "good" quality

BERTScore reliance on references

Original	Below are some useful links to facilitate your involvement.	Simplicity-DA
HYP	Below is some useful links to help with your involvement.	0.327
REF1	Here are good links to help you to do it.	
REF2	Below are some useful links to help with your involvement.	0.5817
REF3	Here are some useful links to help you.	0.9344

[^0]
Metrics across Simplicity Levels

Differences are not as considerable as observed for Simplicity-DA

Simplicity Gain

Gain	Metric	Low $(N=186)$	$\begin{gathered} \text { High } \\ (\mathrm{N}=186) \end{gathered}$	$\begin{gathered} \text { AlI } \\ (N=372) \end{gathered}$
Reference-based (using TurkCorpus)	BERTScore $_{\text {P }}$	0.209	0.231	0.241
	BERTScore $_{\text {F1 }}$	0.215	0.236	0.247
	BLEU-SARI (AM)	0.223	0.172	0.187
	BERTScore $_{\text {R }}$	0.221	0.217	0.241
	BLEU	0.178	0.132	0.123
	BLEU-SARI (GM)	0.246	0.177	0.214
	SARI	0.292	0.240	0.331
Non-Reference-based	FKGL	0.045	0.101	0.147
	SAMSA	0.120	0.042	0.013

SARI does not count correct replacements

Original	Jeddah is the principal gateway to Mecca, Islam's holiest city, which able-bodied Muslims are required to visit at least once in their lifetime.	Simplicity Gain	SARI	
HYP	Jeddah is the main gateway to Mecca, Islam's holiest city, which sound Muslims must visit at least once in life.	1.83	0.462	
Original	The Great Dark Spot is thought to represent a hole in the methane cloud deck of Neptune.	Simplicity Gain	SARI	
HYP	The Great Dark Spot is thought to be a hole in the methane cloud deck of Neptune.		1.25	0.587

Metrics across Simplicity Levels

Problems with SAMSA?

Original	Orton and his wife welcomed Alanna Marie Orton on July 122008.	Structural Simplicity	SAMSA
HYP	Orton and his wife welcomed Alanna Marie Orton on July 122008.	0.0	1.0

Metrics across System Types

Encouraging results considering the current trend in simplification models

Simplicity-DA	Metric	$\begin{aligned} & \text { SBMT } \\ & (\mathrm{N}=100) \end{aligned}$	$\begin{aligned} & \text { PBMT } \\ & (\mathrm{N}=100) \end{aligned}$		
				$\begin{gathered} \text { NMT } \\ (\mathbf{N}=300) \end{gathered}$	$\begin{aligned} & \text { Sem+PBMT } \\ & (N=100) \end{aligned}$
Reference-based (using ASSET)	BERTScore ${ }_{\text {P }}$	0.537	0.459	0.650	0.624
	BERTScore $_{\text {F1 }}$	0.528	0.400	0.588	0.568
	BLEU-SARI (AM)	0.315	0.336	0.536	0.335
	BERTScore ${ }_{\text {R }}$	0.527	0.375	0.484	0.470
	BLEU	0.295	0.347	0.546	0.333
	BLEU-SARI (GM)	0.298	0.320	0.508	0.308
	SARI	0.228	0.173	0.310	0.240
Non-Reference-based	FKGL	0.055	0.063	0.104	0.062
	SAMSA	0.184	0.067	0.126	0.248

Effect of Simplification References

Simplicity-DA

	ASSET (10 references)			ASSET + TurkCorpus + HSplit (22 references)			Selected References (Different refs. per instance according to the operations performed)		
Metric	Low	High	All	Low	High	All	Low	High	All
$\mathrm{BERTS}^{\text {core }}$ P	0.512	0.287	0.617	0.541	0.280	0.629	0.543	0.276	0.635
BERTScore $_{\text {F1 }}$	0.518	0.224	0.573	0.530	0.202	0.576	0.534	0.202	0.584
BLEU-SARI (AM)	0.417	0.239	0.503	0.418	0.218	0.519	0.418	0.221	0.523
BERTScore $_{\text {R }}$	0.471	0.172	0.500	0.476	0.165	0.506	0.479	0.165	0.511
BLEU	0.405	0.235	0.496	0.404	0.230	0.526	0.402	0.223	0.525
BLEU-SARI (GM)	0.408	0.215	0.476	0.410	0.195	0.490	0.410	0.205	0.496
SARI	0.336	0.139	0.359	0.366	0.097	0.353	0.352	0.115	0.350

Takeaways

- Metrics are more reliable when scoring "low quality" simplifications
- Especially in terms of Simplicity-DA
- Correlations change based on system type
- Metrics seem to work well with Neural models (current trend)
- Using all available references does not necessarily lead to higher correlations
- It seems better to select a subset of appropriate references for each automatic output (e.g. based on the operations performed)

Evaluation of Cross-lingual Simplification (Preliminary Results)

European
associ A tion
for Machine
TRANSLATION

Project: Readability-Controlled NMT

Experimental Setting

- Models
- MT: Model for Biomedical Machine Translation
- TS: MUSS (fine-tunes BART in simplification data)
- Pipeline: TS+MT
- Evaluation Data:
- Tico-19 Dataset
- English $\rightarrow 38$ languages

Data Source	Domain	Num. Sentences
CMU	medical, conversational	141
PubMed	medical, scientific	939
Wikinews	news	88
Wikivoyage	travel	243
Wikipedia	general	1,538
Wikisource	announcements	122
		Total

Analysing Simplicity based on Preference

- Spanish native speakers with knowledge of English
- Random 100 sentences (inc. all domains)

Original	Translation 1	Translation 2	Preference
Through this surveillance, we intend to find out more about the epidemiology of COVID-19 in ambulatory care.	A través de esta vigilancia pretendemos conocer más sobre la epidemiología del COVID-19 en atención ambulatoria	A través de este estudio, queremos aprender más sobre COVID-19 en atención ambulatoria	

Preference	Frequency
MT	$\mathbf{4 0}$
TS + MT	$\mathbf{1 1 0}$
No preference	50

Only "fair" agreement :(

Cohen's $\mathrm{K}=0.2$

Measuring the Degree of Simplicity

Original English	Original Spanish	Simplified Spanish	Rank
$\begin{array}{l}\text { It doesn't cover all the } \\ \text { restrictions, but it's still } \\ \text { useful. }\end{array}$	$\begin{array}{l}\text { No cubre todas las } \\ \text { restricciones, pero } \\ \text { sigue siendo útil. }\end{array}$	$\begin{array}{l}\text { No lo cubre todo, pero } \\ \text { sigue siendo útil. }\end{array}$	

0: The Simplified Spanish is equally or less simple, or does not make sense.
1: The Simplified Spanish is slightly simpler, but there's still a lot of room for simplification
2: The Simplified Spanish is significantly simpler. 3: The Simplified Spanish is as simple as it could possible be.

- For TS+MT: $1.64+/-0.85 \rightarrow$ some degree of simplification?

Only "fair" agreement :(

Cohen's $\mathrm{K}=0.25$

Takeaways

- Simple Simplify \rightarrow Translate automatic pipelines do not lead to simpler output
- Motivation for Joint approach
- Evaluation of automatic outputs in specialised domains is more challenging than general domain even if target users are involved.
- Need to adapt guidelines and train annotators to get higher agreement

Thanks!

Datasets with Human Judgements on Simplicity

	Simplicity Gain (Xu et al., 2016)	Structural Simplicity (Sulem et al, 2018)	Simplicity-DA
Type of Rating	Discrete (count)	Discrete (Likert scale)	Continuous
Instances	372	1,750	600
System Types	$\begin{aligned} & \text { PBMT } \\ & \text { SBMT } \end{aligned}$	$\begin{gathered} \text { PBMT } \\ \text { SBMT } \\ \text { NMT } \\ \text { Sem } \\ \text { Sem+PBMT } \\ \text { Sem+NMT } \end{gathered}$	PBMT SBMT NMT Sem+PBMT
ICC	0.176	0.465	0.386
Spearman's p	0.299	0.508	0.607

[^0]: References can have different degrees of simplicity

