

Challenges in Evaluation of Automatic Text Simplification

Fernando Alva-Manchego

Simplify Language – Capture Audience

24 September 2021

Outline

- What is (Automatic) Text Simplification?
- Preliminaries:
 - Automatic Evaluation of Sentence Simplification
 - Human Evaluation of Sentence Simplicity
- Meta-Evaluation of Automatic Evaluation Metrics
- Preliminary Study on Evaluation of Cross-lingual Simplification

What is Text Simplification?

Modify the content and structure of a text so that it is **easier to understand** while preserving its original meaning

Examples from: Wei Xu, Chris Callison-Burch, and Courtney Napoles. 2015. *Problems in Current Text Simplification Research: New Data Can Help*. Transactions of the Association for Computational Linguistics, 3:283–297.

Automatic Sentence Simplification

Slightly more fourth-graders nationwide are reading proficiently compared with a decade ago, but only a third of them are now reading well, according to a new report.

Fourth-graders are better readers than 10 years ago. But few of them read well.

Sequence-to-Sequence Model

- Machine Translation
- Summarization
- Caption Generation

. . .

How do you determine the quality of an automatic simplification?

Automatic Evaluation of Sentence Simplification

Standard Automatic Evaluation Pipeline

SARI (Xu et al., 2016)

Lexical Paraphrasing

Input: About 95 species are currently accepted.

REF-1: About 95 species are currently known.

REF-2: About 95 species are now accepted.

REF-3: 95 species are now accepted.

Output-1: About 95 you now get in . \rightarrow 0.2683

Output-2: About 95 species are now agreed . \rightarrow 0.7594

Output-3: About 95 species are currently agreed. \rightarrow 0.5890

SAMSA (Sulem et al., 2018)

System Output:

Sentence Splitting

Assumption: In an ideal simplification each event is placed in a different sentence.

John arrived home. John called Mary.

1.0

Score:

Readability Indices

Flesch Reading Ease (Flesch, 1948)

$$FRE = 206.835 - 1.015 \left(\frac{total\ words}{total\ sentences} \right) - 84.6 \left(\frac{total\ syllables}{total\ words} \right)$$

Flesch-Kincaid Grade Level (Kincaid et al., 1975)

$$FKGL = 0.39 \left(\frac{total\ words}{total\ sentences} \right) + 11.8 \left(\frac{total\ syllables}{total\ words} \right) - 15.59$$

Metrics used in Machine Translation

BLEU (Papineni et al., 2002)

$$p_{n} = \frac{\sum_{S \in C} \sum_{ngram \in S} Count_{matched}(ngram)}{\sum_{S \in C} \sum_{ngram \in S} Count(ngram)} \qquad BP = \begin{cases} 1 & if \ c > r \\ \frac{1}{c} & if \ c \leq r \end{cases} \qquad BLEU = BP \times exp\left(\sum_{n=1}^{N} w_{n} \log p_{n}\right)$$

• **BERTScore** (Zhang et al., 2020)

Human Evaluation of Sentence Simplicity

Simplicity Gain

Lexical Paraphrasing

SARI

Grade the quality of the variations by identifying the words/phrases that are altered, and counting how many of them are good simplifications

5 ratings per sentence pair

Structural Simplicity

Sentence Splitting

SAMSA

Likert Scale: -2 to +2

Is the output simpler than the input, **ignoring the** complexity of the words?

3 ratings per sentence pair

Simplicity-DA

General Simplicity

Direct Assessment

100
50

The Simplified sentence is easier to understand than the Original sentence

15 ratings per sentence pair

Lucia Specia

The (Un)Suitability of Automatic Evaluation Metrics for Text Simplification

Fernando Alva-Manchego* University of Sheffield Carolina Scarton* University of Sheffield

Lucia Specia** Imperial College London

Computational Linguistics

https://github.com/feralvam/metaeval-simplification

High Correlation = "Good" Metric?

Experimental Setting

- Study the behaviour of automatic metrics at the sentence-level
- Focused on metrics that measure (some form of) simplicity
- Analyse the variation of correlation w.r.t.
 - a. Simplicity levels
 - b. System type
 - c. Set of manual references

Metrics

- a. SARI, SAMSA, FKGL, BLEU, BERTScore
- b. Averages of BLEU, SARI, SAMSA

Metrics across Simplicity Levels

Low scores indicate "bad" quality of a simplification, but high scores do not necessarily imply "good" quality

Simplicity-DA

:y-DA					
ly-DA	Metric	Low (N = 300)	High (N=300)	AII (N=600)	
	BERTScore _P	0.512	0.287	0.617	
	BERTScore _{F1}	0.518	0.224	0.573	
	BLEU-SARI (AM)	0.417	0.239	0.503	
Reference-based (using ASSET)	BERTScore _R	0.471	0.172	0.500	
	BLEU	0.405	0.235	0.496	
	BLEU-SARI (GM)	0.408	0.215	0.476	
	SARI	0.336	0.139	0.359	
Non-Reference-based	FKGL	0.272	0.093	0.117	
Tron reference based	SAMSA	0.103	0.010	0.058	

BERTScore reliance on references

Original	Below are some useful links to facilitate your involvement.	Simplicity-DA			
HYP	Below is some useful links to help with your involvement.	0.327			
BERTScore _P					
REF1	Here are good links to help you to do it.	0.5817			
REF2	Below are some useful links to help with your involvement.	0.9344			
REF3	Here are some useful links to help you.	0.7308			

References can have different degrees of simplicity

Differences are not as considerable as observed for Simplicity-DA

Metrics across Simplicity Levels

Simplicity Gain

ty Gain					
.y Guiii	Metric	Low (N = 186)	High (N=186)	AII (N=372)	
	BERTScore _P	0.209	0.231	0.241	
	BERTScore _{F1}	0.215	0.236	0.247	
	BLEU-SARI (AM)	0.223	0.172	0.187	
Reference-based (using TurkCorpus)	BERTScore _R	0.221	0.217	0.241	
	BLEU	0.178	0.132	0.123	
	BLEU-SARI (GM)	0.246	0.177	0.214	
	SARI	0.292	0.240	0.331	
Non-Reference-based	FKGL	0.045	0.101	0.147	
Non Neichenbergard	SAMSA	0.120	0.042	0.013	

SARI does not count correct replacements

Original	Jeddah is the principal gateway to Mecca, Islam's holiest city, which able-bodied Muslims are required to visit at least once in their lifetime .	Simplicity Gain	SARI
НҮР	Jeddah is the main gateway to Mecca, Islam's holiest city, which sound Muslims must visit at least once in life .	1.83	0.462

Original	The Great Dark Spot is thought to represent a hole in the methane cloud deck of Neptune.	Simplicity Gain	SARI
НҮР	The Great Dark Spot is thought to be a hole in the methane cloud deck of Neptune.	1.25	0.587

Metrics across Simplicity Levels

BERTScore is only the best when scoring "low" quality simplifications

Structural Simplicity

ral Simplicity					
ral Simplicity	Metric	Low (N = 875)	High (N=875)	AII (N=1750)	
Reference-based (using HSplit)	BERTScore _P	0.552	0.310	0.090	
	BERTScore _{F1}	0.483	0.529	0.325	
	BLEU-SARI (AM)	0.346	0.599	0.431	
	BERTScore _R	0.411	0.601	0.430	
	BLEU	0.421	0.643	0.443	
	BLEU-SARI (GM)	0.329	0.589	0.438	
	SARI	0.137	0.418	0.313	
Non-Reference-based	FKGL	0.070	0.165	0.228	
	SAMSA	0.103	0.431	0.284	

Problems with SAMSA?

Original Orton and his wife welcomed Alanna Marie Orton on July 12 2008.

Orton and his wife welcomed Alanna Marie Orton on July 12 2008.

Orton and his wife welcomed Alanna Marie Orton on July 12 2008.

Only when

splitting

happens?

Is this score

fair?

Encouraging results considering the current trend in simplification models

Metrics across System Types

Simplicity-DA

ilicity-DA	Metric	SBMT (N = 100)	PBMT (N=100)	NMT (N=300)	Sem+PBMT (N=100)
	BERTScore _P	0.537	0.459	0.650	0.624
	BERTScore _{F1}	0.528	0.400	0.588	0.568
	BLEU-SARI (AM)	0.315	0.336	0.536	0.335
Reference-based (using ASSET)	BERTScore _R	0.527	0.375	0.484	0.470
	BLEU	0.295	0.347	0.546	0.333
	BLEU-SARI (GM)	0.298	0.320	0.508	0.308
	SARI	0.228	0.173	0.310	0.240
Non-Reference-based	FKGL	0.055	0.063	0.104	0.062
	SAMSA	0.184	0.067	0.126	0.248

Effect of Simplification References

All metrics (but SARI) improve their correlations

Simplicity-DA

mony DA	ASSET (10 references)			ASSET + TurkCorpus + HSplit (22 references)			Selected References (Different refs. per instance according to the operations performed)		
Metric	Low	High	All	Low	High	All	Low	High	All
BERTScore _P	0.512	0.287	0.617	0.541	0.280	0.629	0.543	0.276	0.635
BERTScore _{F1}	0.518	0.224	0.573	0.530	0.202	0.576	0.534	0.202	0.584
BLEU-SARI (AM)	0.417	0.239	0.503	0.418	0.218	0.519	0.418	0.221	0.523
BERTScore _R	0.471	0.172	0.500	0.476	0.165	0.506	0.479	0.165	0.511
BLEU	0.405	0.235	0.496	0.404	0.230	0.526	0.402	0.223	0.525
BLEU-SARI (GM)	0.408	0.215	0.476	0.410	0.195	0.490	0.410	0.205	0.496
SARI	0.336	0.139	0.359	0.366	0.097	0.353	0.352	0.115	0.350

Takeaways

- Metrics are more reliable when scoring "low quality" simplifications
 - o Especially in terms of Simplicity-DA
- Correlations change based on system type
 - Metrics seem to work well with Neural models (current trend)
 - Using all available references does not necessarily lead to higher correlations
 - It seems better to select a subset of appropriate references for each automatic output (e.g. based on the operations performed)

What about for languages other than English?

Evaluation of Cross-lingual Simplification (Preliminary Results)

Project: Readability-Controlled NMT

Experimental Setting

Models

MT: Model for Biomedical Machine Translation

• TS: MUSS (fine-tunes BART in simplification data)

Pipeline: TS+MT

Evaluation Data:

Tico-19 Dataset

English → 38 languages

Data Source	Domain	Num. Sentences
CMU	medical, conversational	141
PubMed	medical, scientific	939
Wikinews	news	88
Wikivoyage	travel	243
Wikipedia	general	1,538
Wikisource	announcements	122
	Total	3,071

Analysing Simplicity based on Preference

- Spanish native speakers with knowledge of English
- Random 100 sentences (inc. all domains)

Original	Translation 1	Translation 2	Preference
Through this surveillance, we intend to find out more about the epidemiology of COVID-19 in ambulatory care.	A través de esta vigilancia pretendemos conocer más sobre la epidemiología del COVID-19 en atención ambulatoria	A través de este estudio, queremos aprender más sobre COVID-19 en atención ambulatoria	

1: Translation 1 is simpler

2: Translation 2 is simpler

3: Both are equally simple/complex

Preference	Frequency
MT	40
TS + MT	110
No preference	50

Measuring the Degree of Simplicity

Original English	Original Spanish	Simplified Spanish	Rank	
It doesn't cover all the restrictions, but it's still useful.	No cubre todas las restricciones, pero sigue siendo útil.	No lo cubre todo, pero sigue siendo útil.		

0: The Simplified Spanish is equally or less simple, or does not make sense.

1: The Simplified Spanish is slightly simpler, but there's still a lot of room for simplification

2: The Simplified Spanish is significantly simpler.3: The Simplified Spanish is as simple as it could possible be.

For TS+MT: 1.64 +/- 0.85 \rightarrow some degree of simplification?

Takeaways

- Simple Simplify → Translate automatic pipelines do not lead to simpler output
 - Motivation for Joint approach

- Evaluation of automatic outputs in specialised domains is more challenging than general domain even if target users are involved.
 - Need to adapt guidelines and train annotators to get higher agreement

Suggestions are more than welcome!

Thanks!

Fernando Alva-Manchego

Datasets with Human Judgements on Simplicity

	Simplicity Gain (Xu et al., 2016)	Structural Simplicity (Sulem et al, 2018)	Simplicity-DA	
Type of Rating	Discrete (count)	Discrete (Likert scale)	Continuous	Includes SotA
Instances	372	1,750	600	
System Types	PBMT SBMT	PBMT SBMT NMT Sem Sem+PBMT Sem+NMT	PBMT SBMT NMT ← Sem+PBMT	
ICC	0.176	0.465	0.386	
Spearman's p	0.299	0.508	0.607	