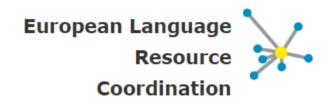
Cross-Lingual Semantic Search

Nils Reimers
HuggingFace
Creator of Sentence-Transformers (www.SBERT.net)



Neural Search — Why all the Hype?

- Real example on (Simple) Wikipedia (170k documents)
- Query: What is the capital of the United States?
- Top-3 Hits

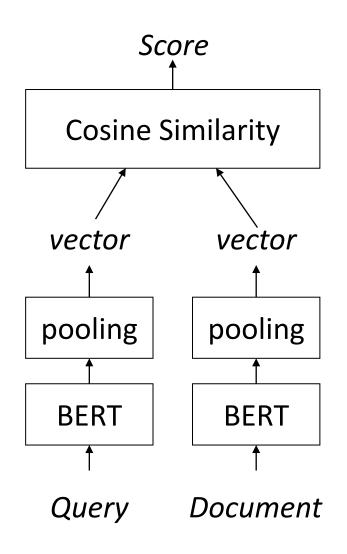
Lexical Search (BM25)

- Capital punishment (the death penalty) has existed in the United
 States [...]
- Ohio is one of the 50 states in the
 United States. Its capital is Columbus.
 [...]
- Nevada is one of the United States' states. Its capital [...]

Neural Search

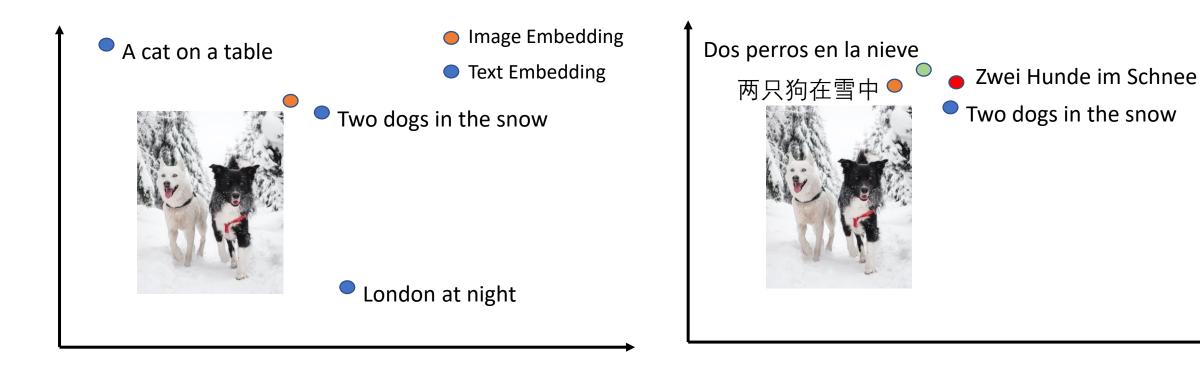
- Washington, D.C. [...] is the capital of the United States. [...]
- A capital city (or capital town or just capital) is a city or town, [...]
- The United States Capitol is the building where the United States Congress meets [...]

Bi-Encoders





Multi-Modal & Multi-Lingual Search

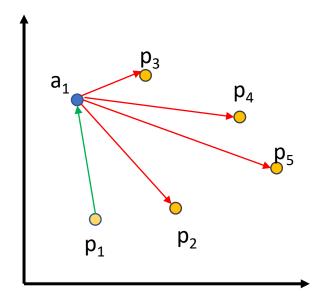


Multiple Negative Ranking Loss

Have positive pairs:

```
(a<sub>1</sub>, p<sub>1</sub>)
(a<sub>2</sub>, p<sub>2</sub>)
(a<sub>3</sub>, p<sub>3</sub>)
```

- Examples:
 - (query, answer-passage)
 - (English sentence, French Sentence)
- (a_i, p_i) should be close in vector space and (a_i, p_j) should be distant in vector space (i != j)
 - Unlikely that e.g. two randomly selected questions are similar
- Computed as ranking loss with Cross-Entropy:
 - Given a_1 , which is the right answer out of $[p_1, p_2, p_3]$?
 - Compute scores: $[s(a_1, p_1), s(a_1, p_2), s(a_1, p_3)]$
 - Cross-Entropy loss with gold label: [1, 0, 0]
- Also called "training with in-batch negatives", InfoNCE or NTXentLoss



Multiple Negative Ranking Loss Intuitive Explanation

- a₁: How do you feel today?
 - p₁: Wie fühlst du dich heute? (How do you feel today?)
 - p₂: Vielen Dank für die Frage (Thank you for the question)
 - p₃: Gibt es weitere Fragen (Are there further questions?)
- Compute text embeddings & compute similarities:
 - \blacksquare sim(a₁, p₁) = 0.5
 - \blacksquare sim(a₁, p₂) = 0.3
 - \blacksquare sim(a₁, p₃) = 0.1
- See it as classification task and use Cross-Entropy Loss:
 - Prediction: [0.5, 0.3, 0.1]
 - Gold: [1, 0, 0]

Multiple Negative Ranking Loss Hard Negatives

- Larger batch size => task more difficult => better results
 - Given query, which of the 10 passages provide the answer?
 - Given query, which of the 1k passages provide the answer?

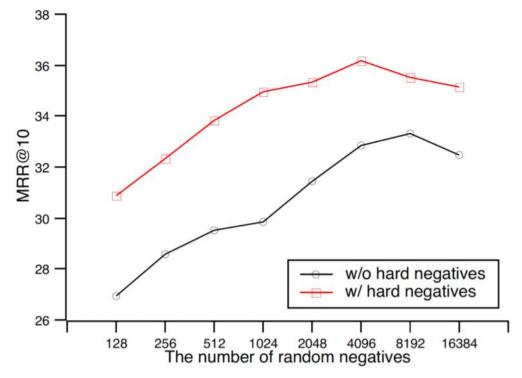


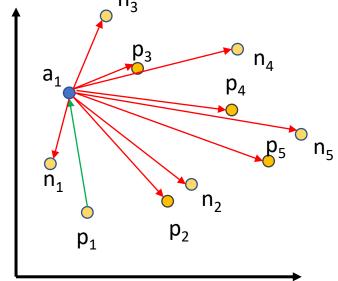
Image: https://arxiv.org/pdf/2010.08191.pdf

Multiple Negative Ranking Loss Hard Negatives

Train with tuples:

- n_i should be similar to p_i but not match with a_i
- Bad example:

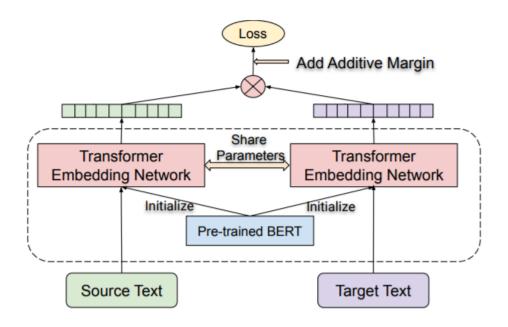
 - a: How many people live in London?p: Around 9 million people live in Londonn: London has a population of 9 million people.



- Good example:

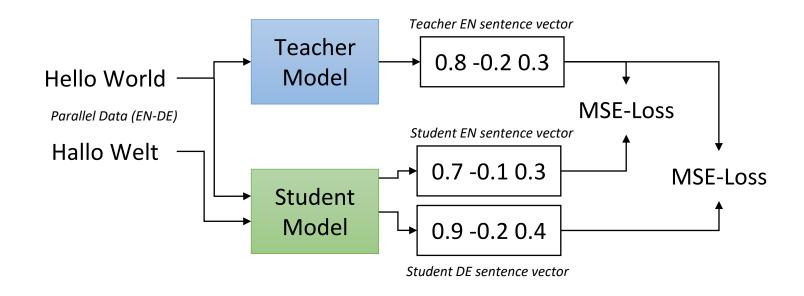
 - a: How many people live in London?p: Around 9 million people live in London
 - n: Around 1 million people live in Birmingham, second to London.

LaBSE



- Pre-Training
 - Trained on large mono-lingual dataset via MLM
 - Trained on translation pairs via TLM (Translation Lang. Model)
- Fine-tuned on translation pairs via MultipleNegativesRankingLoss

Multilingual Knowledge Distillation



Given:

- Teacher sentence embedding model T (e.g. SBERT trained on English STS)
- Parallel sentence data $((s_1, t_1), ..., (s_n, t_n))$
- Student model S with multilingual vocabulary (e.g. XLM-R + Mean Pooling)
- Train student S such that:

$$S(s_i) \approx T(s_i)$$
 $S(t_i) \approx T(s_i)$

Results – Semantic Similarity

Given two sentences, predict semantic similarity (0...5)

Model	EN-AR	EN-DE	EN-TR	EN-ES	EN-FR	EN-IT	EN-NL	Avg.
mBERT mean	16.7	33.9	16.0	21.5	33.0	34.0	35.6	27.2
XLM-R mean	17.4	21.3	9.2	10.9	16.6	22.9	26.0	17.8
mBERT-nli-stsb	30.9	62.2	23.9	45.4	57.8	54.3	54.1	46.9
XLM-R-nli-stsb	44.0	59.5	42.4	54.7	63.4	59.4	66.0	55.6
Knowledge Distillation	Knowledge Distillation							
$mBERT \leftarrow SBERT$ -nli-stsb	77.2	78.9	73.2	79.2	78.8	78.9	77.3	77.6
$DistilmBERT \leftarrow SBERT-nli-stsb$	76.1	77.7	71.8	77.6	77.4	76.5	74.7	76.0
$XLM-R \leftarrow SBERT-nli-stsb$	77.8	78.9	74.0	79.7	78.5	78.9	77.7	77.9
$XLM-R \leftarrow SBERT$ -paraphrases	82.3	84.0	80.9	83.1	84.9	86.3	84.5	83.7
Other Systems								
LASER	66.5	64.2	72.0	57.9	69.1	70.8	68.5	67.0
mUSE	79.3	82.1	75.5	79.6	82.6	84.5	84.1	81.1
LaBSE	74.5	73.8	72.0	65.5	77.0	76.9	75.1	73.5

- mBERT / XLM-R perform badly when trained on English only
- Knowledge Distillation incorporates knowledge from teacher model
- LASER & LaBSE perform badly

Bitext Mining

■ Given two corpora: Find parallel (translated) sentences

Model	DE-EN	FR-EN	RU-EN	ZH-EN	Avg.	
mBERT mean	44.1	47.2	38.0	37.4	41.7	
XLM-R mean	5.2	6.6	22.1	12.4	11.6	
mBERT-nli-stsb	38.9	39.5	26.4	30.2	33.7	
XLM-R-nli-stsb	44.0	51.0	51.5	44.0	47.6	
Knowledge Distillation						
$XLM-R \leftarrow SBERT-nli-stsb$	86.8	84.4	86.3	85.1	85.7	
$XLM-R \leftarrow SBERT$ -paraphrase	90.8	87.1	88.6	87.8	88.6	
Other systems						
mUSE	88.5	86.3	89.1	86.9	87.7	
LASER	95.4	92.4	92.3	91.7	93.0	
LaBSE	95.9	92.5	92.4	93.0	93.5	

Table 3: F_1 score on the BUCC bitext mining task.

- LASER & LaBSE better than mUSE & Knowledge Distillation
- Issue with mUSE & KD: They find similar sentences, that are not perfect translations

Data Efficiency

Dataset	#DE	EN-DE	#AR	EN-AR
XLM-R mean	-	21.3	-	17.4
XLM-R-nli-stsb	-	59.5	-	44.0
MUSE Dict	101k	75.8	27k	68.8
Wikititles Dict	545k	71.4	748k	67.9
MUSE + Wikititles	646k	76.0	775k	69.1

Dataset size	EN-DE	EN-AR
XLM-R mean	21.3	17.4
XLM-R-nli-stsb	59.5	44.0
1k	71.5	48.4
5k	74.5	59.6
10k	77.0	69.5
25k	80.0	70.2
Full TED2020	80.4	78.0

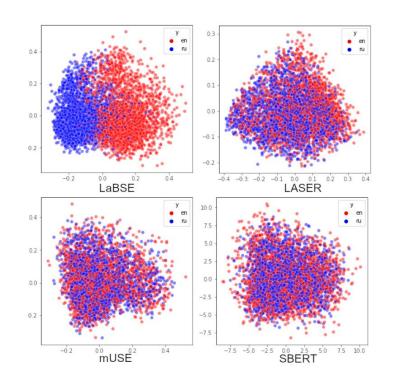
Table 6: Performance on STS 2017 dataset when trained with reduced TED2020 dataset sizes.

Knowledge Distillation vs. Training on Target Language

Model	ко-ко
LASER	68.44
mUSE	76.32
Trained on KorNLI & KorSTS	
Korean RoBERTa-base	80.29
Korean RoBERTa-large	80.49
XLM-R	79.19
XLM-R-large	81.84
Multiling. Knowledge Distillation	
XLM-R ← SBERT-nli-stsb	81.47
XLM-R-large ← SBERT-large-nli-stsb	83.00

Table 7: Spearman rank correlation on Korean STS-benchmark test-set (Ham et al., 2020).

Language Bias



- Preference of certain language combinations
- Language bias impacts performance negatively on multilingual pools
- LASER and LaBSE with strong language bias

Model	Expected Score	Actual Score	Difference
LASER	69.5	68.6	-0.92
mUSE	81.7	81.6	-0.19
LaBSE	74.4	73.1	-1.29
$XLM-R \leftarrow SBERT$ -paraphrases	84.0	83.9	-0.11

Language Bias – Good or Bad?

Side-effects with language bias:

- Same language results are ranked higher just because of language
- There might be better hits / answers in other languages

Side-Effects without Language Bias

wedding

शादी (hindi: wedding)

Who is the president?

A: Joe Biden is the current president

qui est le président?

A: Joe Biden is the current president

Conclusions

- Sematic search much better than keyword search
- Can work on many languages & modalities
- Usage of translation pairs to align vector spaces
- Training setup impacts if language bias exist or not
- How to get a language bias free model that still respects cultural / language specific differences
 - cat vs बिल्ली
 - wedding vs शादी