

Improving Multilingual Neural Machine Translation with Language-Family Adapters

Alexandra Chronopoulou

DG CNECT workshop on large language models

Language-Family Adapters for Multilingual Neural Machine Translation [Chronopoulou A., Stojanovski D., Fraser A., 2022]

Motivation

Machine Translation permits information flow

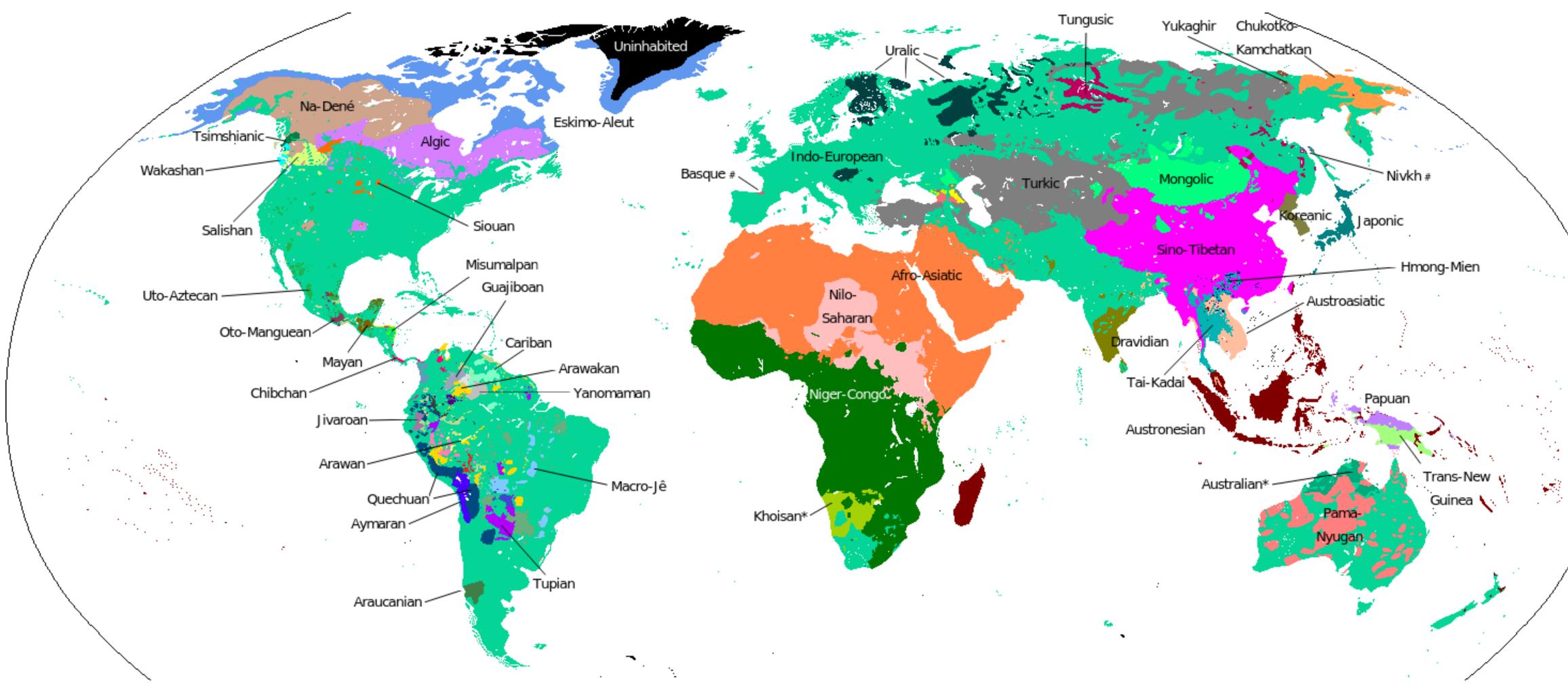


Image credit: Wikipedia

> 7000 languages in the world

Multilingual Neural Machine Translation

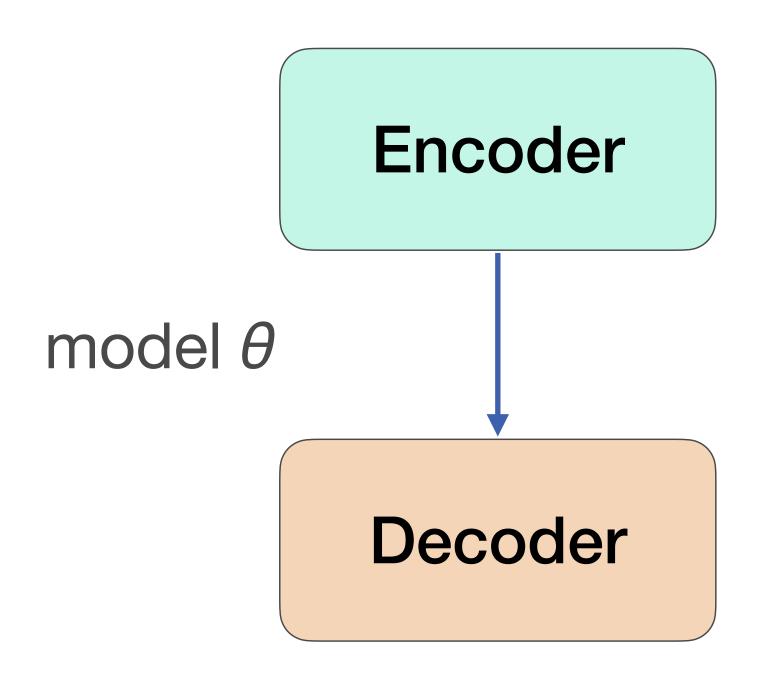
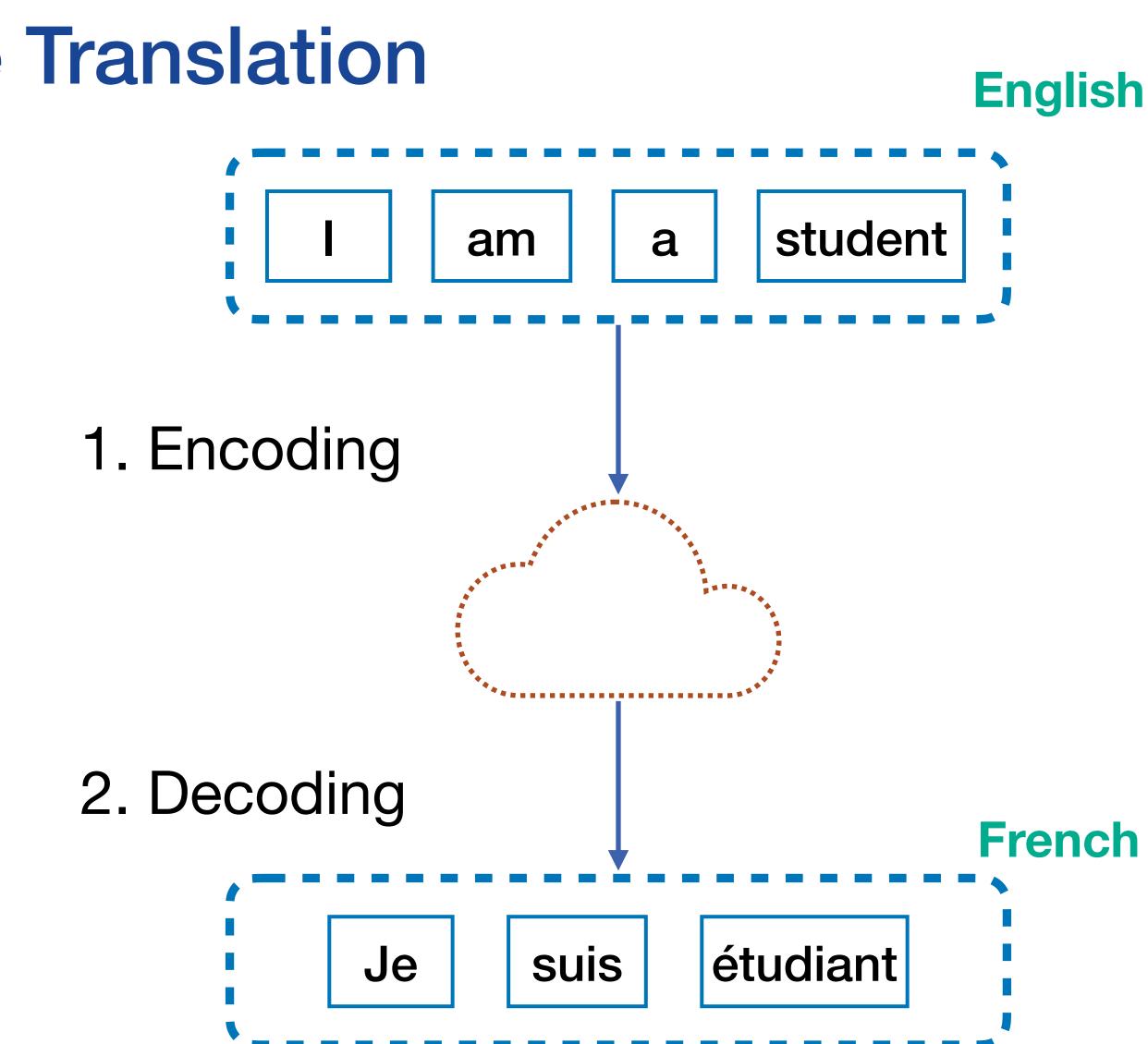


Image credit: https://sites.cs.ucsb.edu/~lilei/TALKS/2021-ACL/pre-training_nmt_ACL_tutorial_2021.pdf



Multilingual Neural Machine Translation

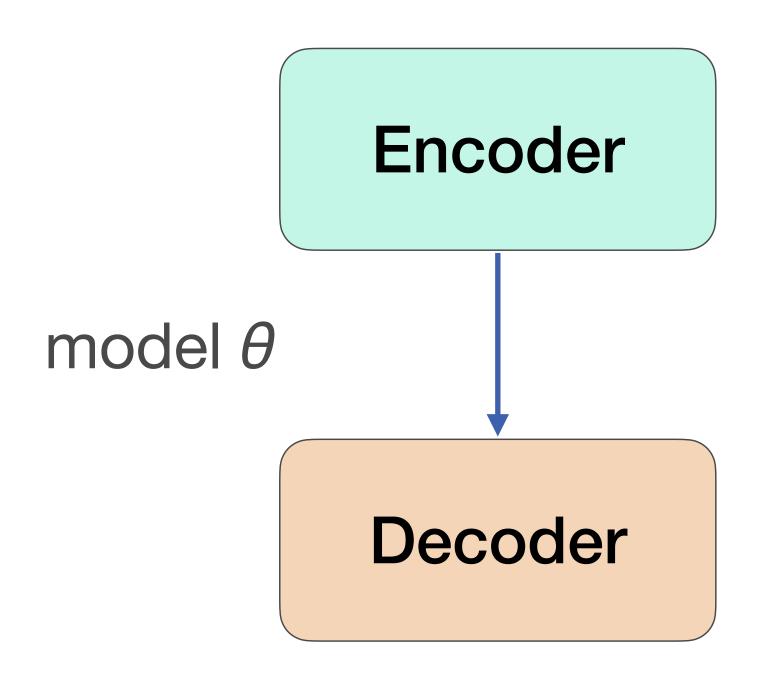
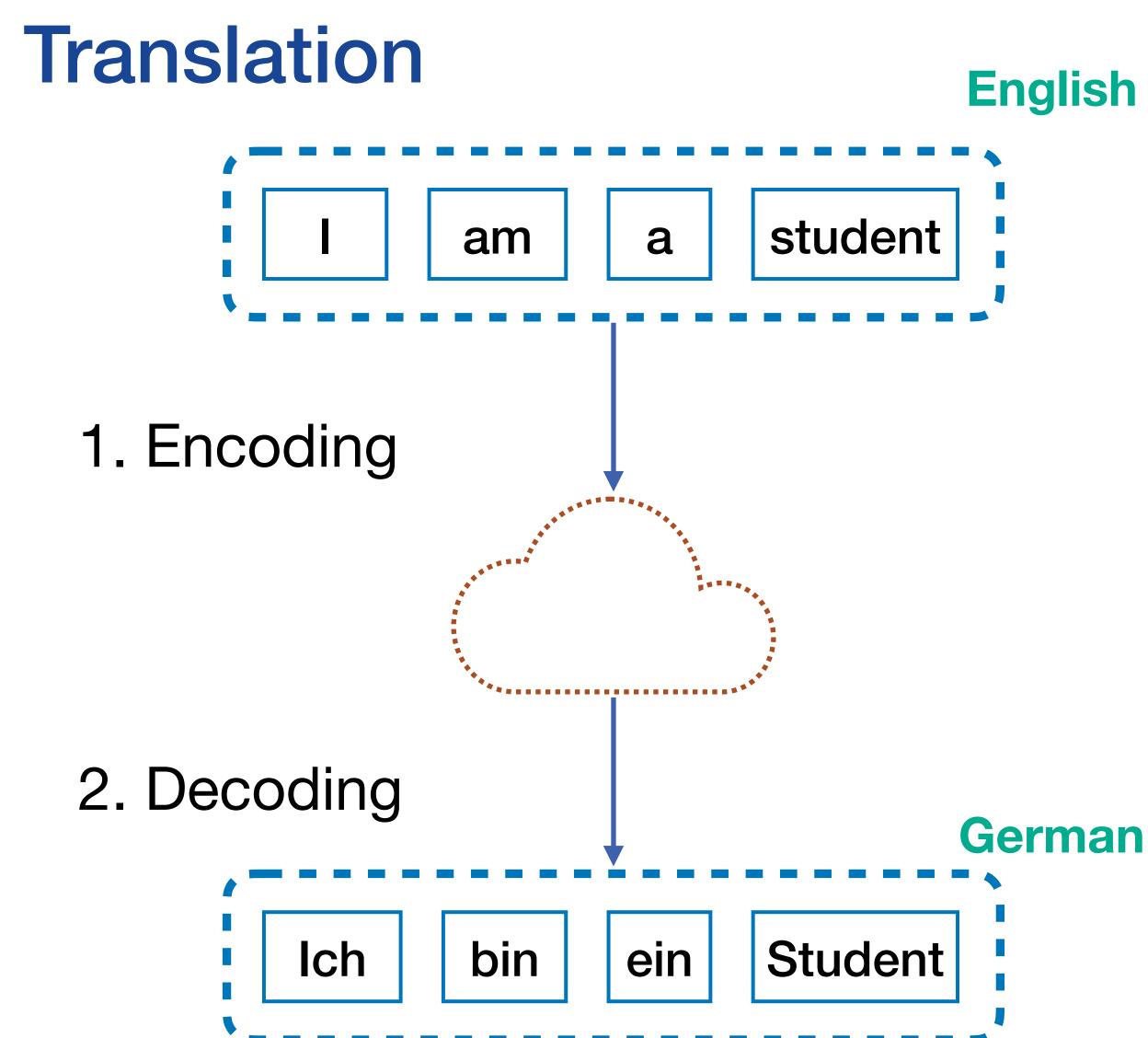


Image credit: https://sites.cs.ucsb.edu/~lilei/TALKS/2021-ACL/pre-training_nmt_ACL_tutorial_2021.pdf



Multilingual Neural Machine Translation

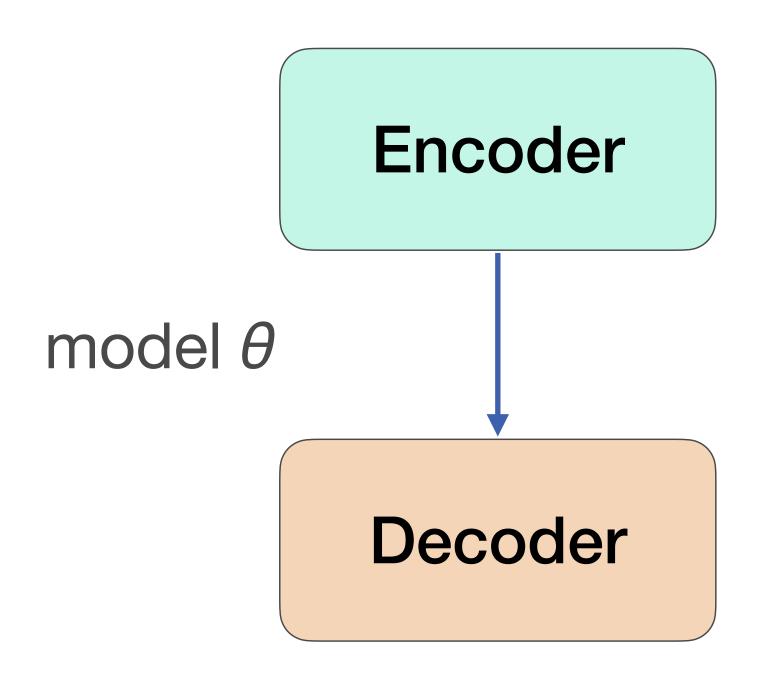
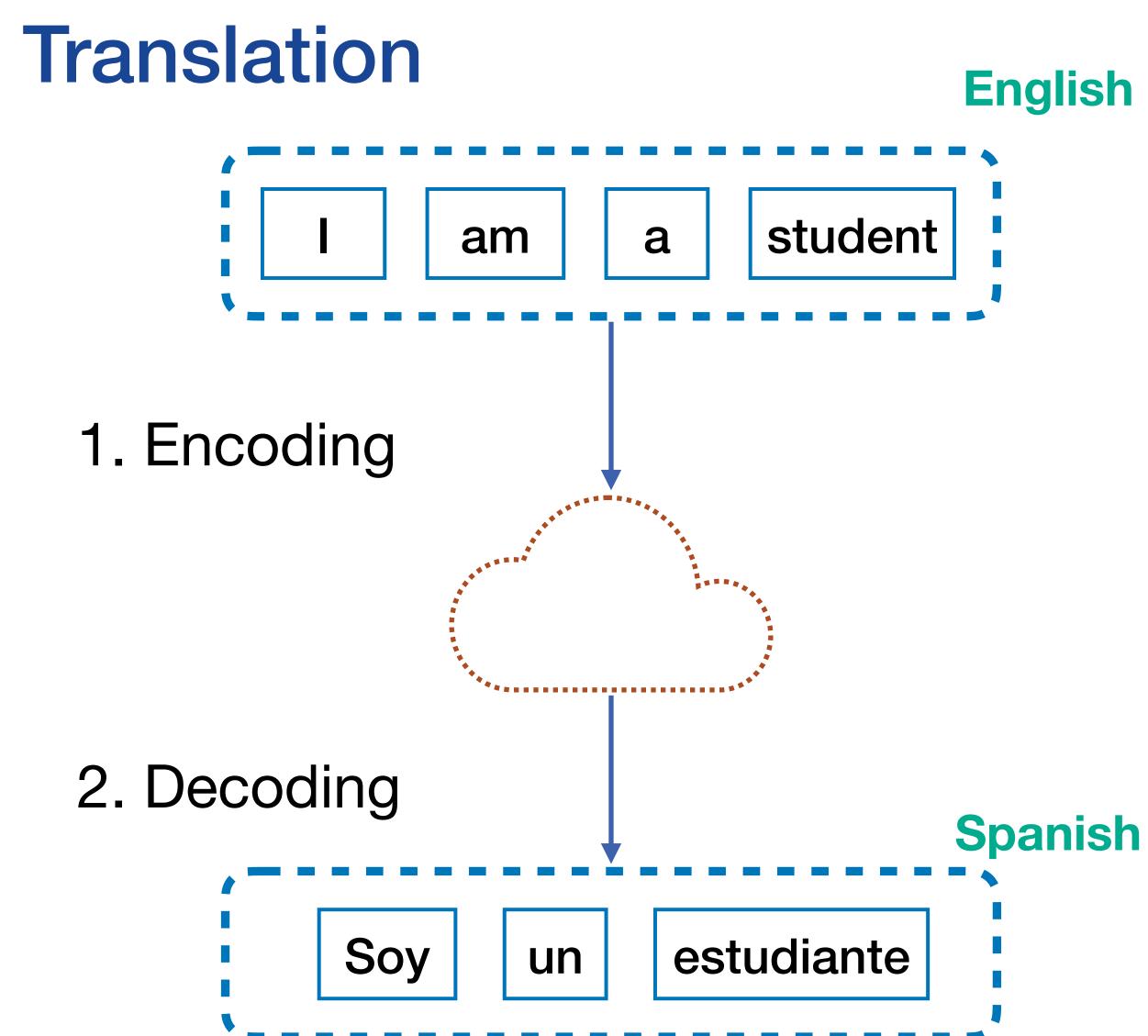
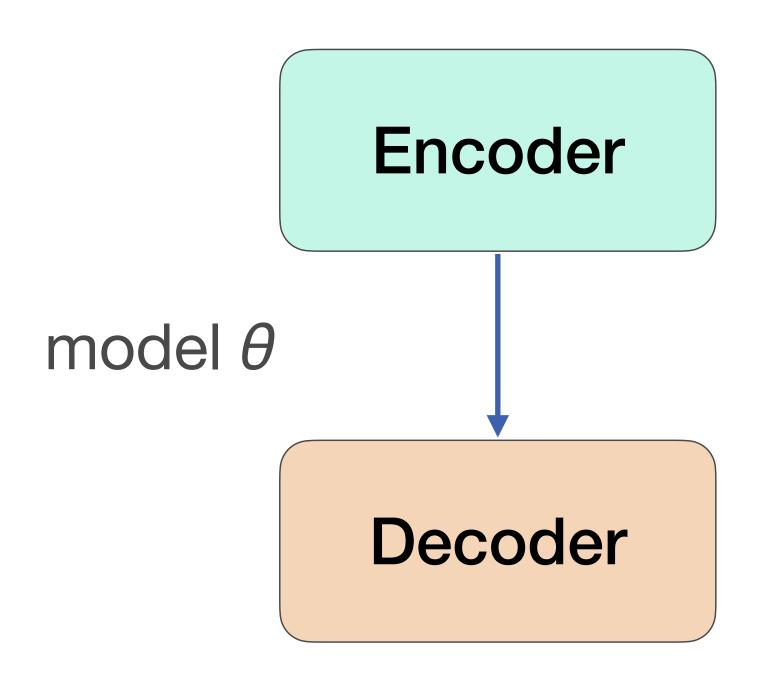
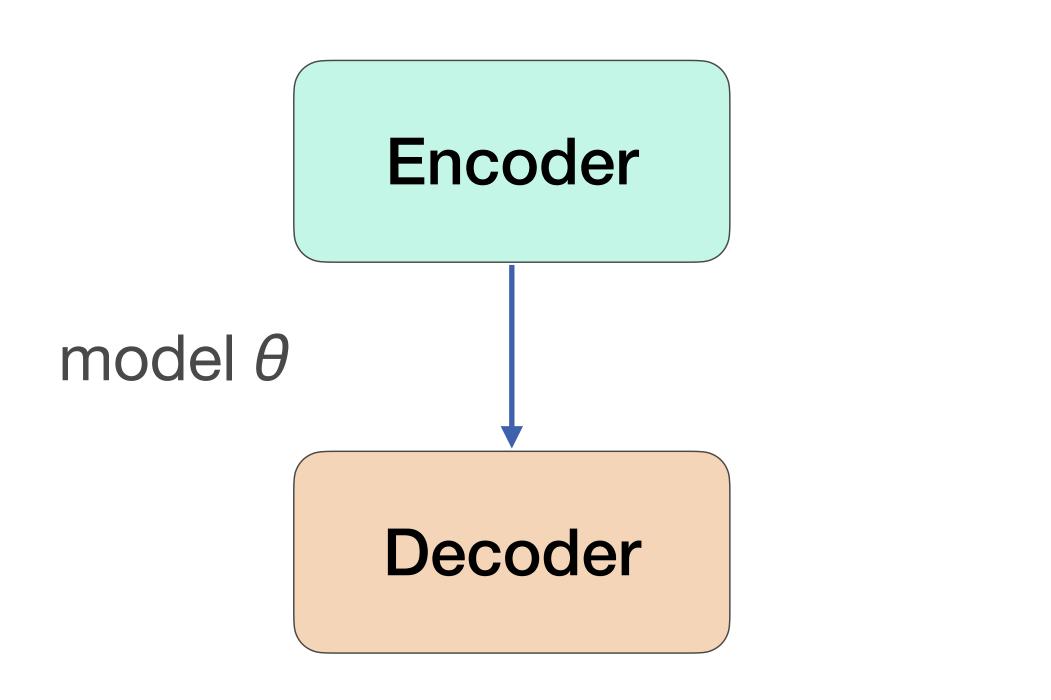


Image credit: https://sites.cs.ucsb.edu/~lilei/TALKS/2021-ACL/pre-training_nmt_ACL_tutorial_2021.pdf



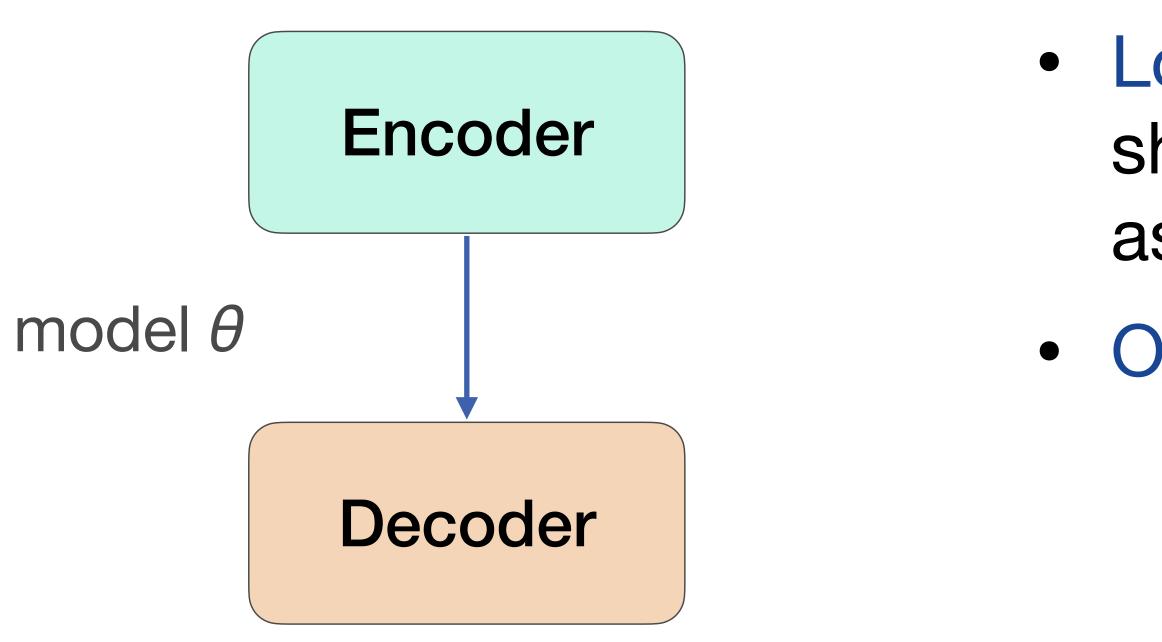


Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation [Johnson et al., 2016]



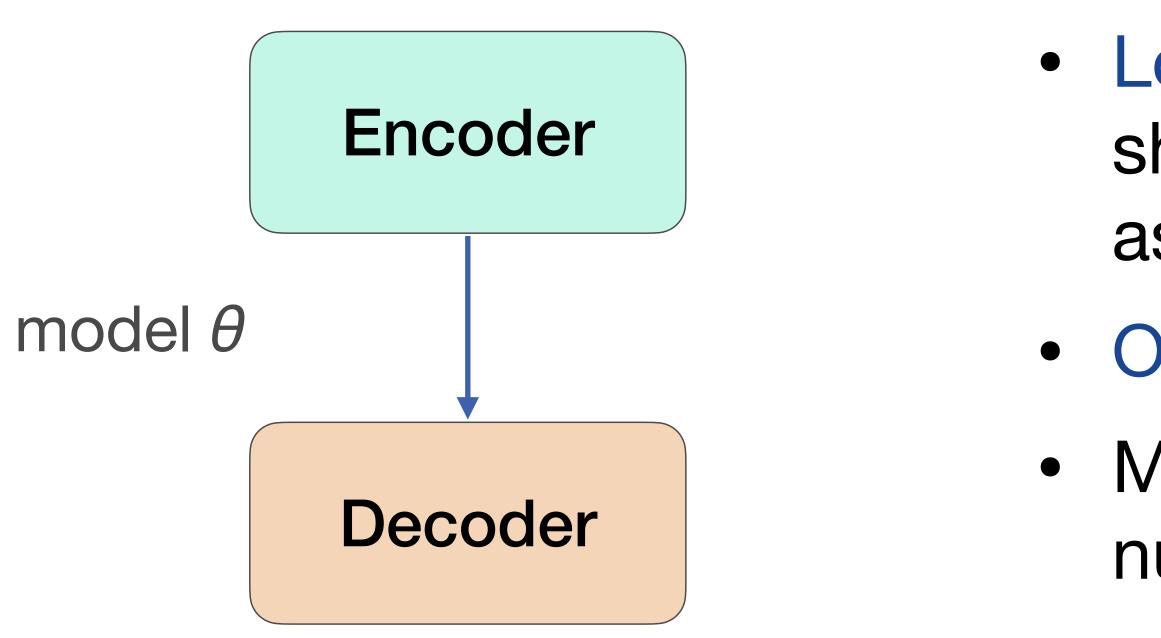
Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation [Johnson et al., 2016] Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges [Arivazhagan et al., 2019] Massively Multilingual Neural Machine Translation [Aharoni et al., 2019]

Low-resource languages benefit from sharing the same representation space as high-resource languages



Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation [Johnson et al., 2016] Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges [Arivazhagan et al., 2019] Massively Multilingual Neural Machine Translation [Aharoni et al., 2019]

- Low-resource languages benefit from sharing the same representation space as high-resource languages
- Operational costs are reduced



Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation [Johnson et al., 2016] Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges [Arivazhagan et al., 2019] Massively Multilingual Neural Machine Translation [Aharoni et al., 2019]

- Low-resource languages benefit from sharing the same representation space as high-resource languages
- Operational costs are reduced
- Multilingual NMT scales to a large number of language pairs

Pre-training and fine-tuning

- Parallel data scarcity for low/zero resource languages
- It is easier to find abundant monolingual data
- Pre-training is a way to leverage this data

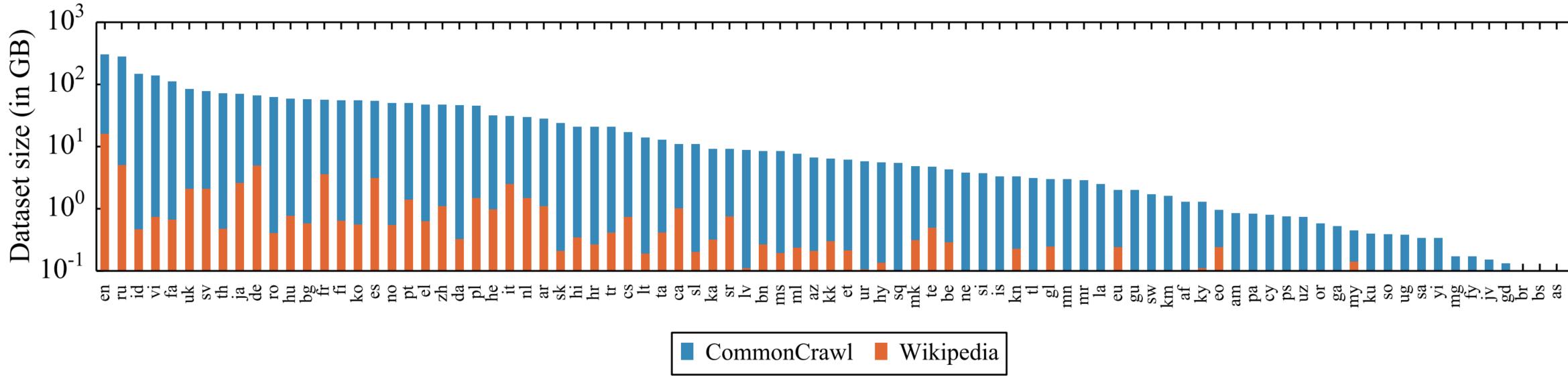


Image credit: Unsupervised Cross-lingual Representation Learning at Scale (XLM-R) [Conneau et al., 2020]

Training a MNMT model from scratch is computationally expensive

Pre-training and fine-tuning

- Fine-tuning large pretrained models is effective in many NLU tasks
- Perhaps it can also work for machine translation?

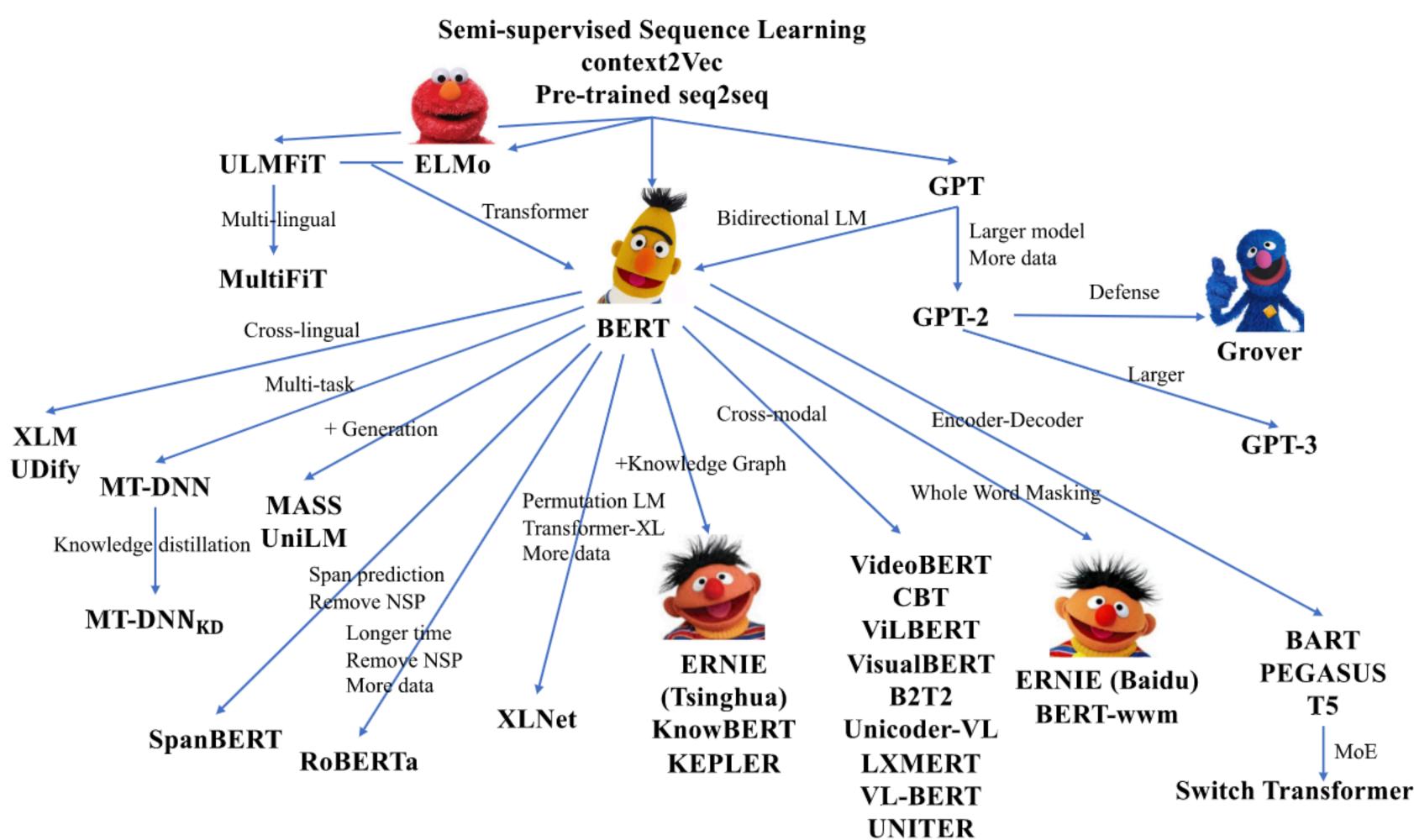
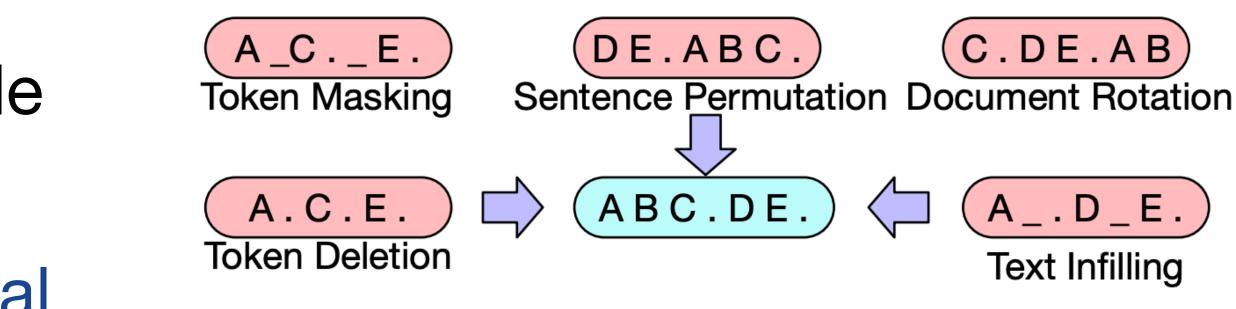
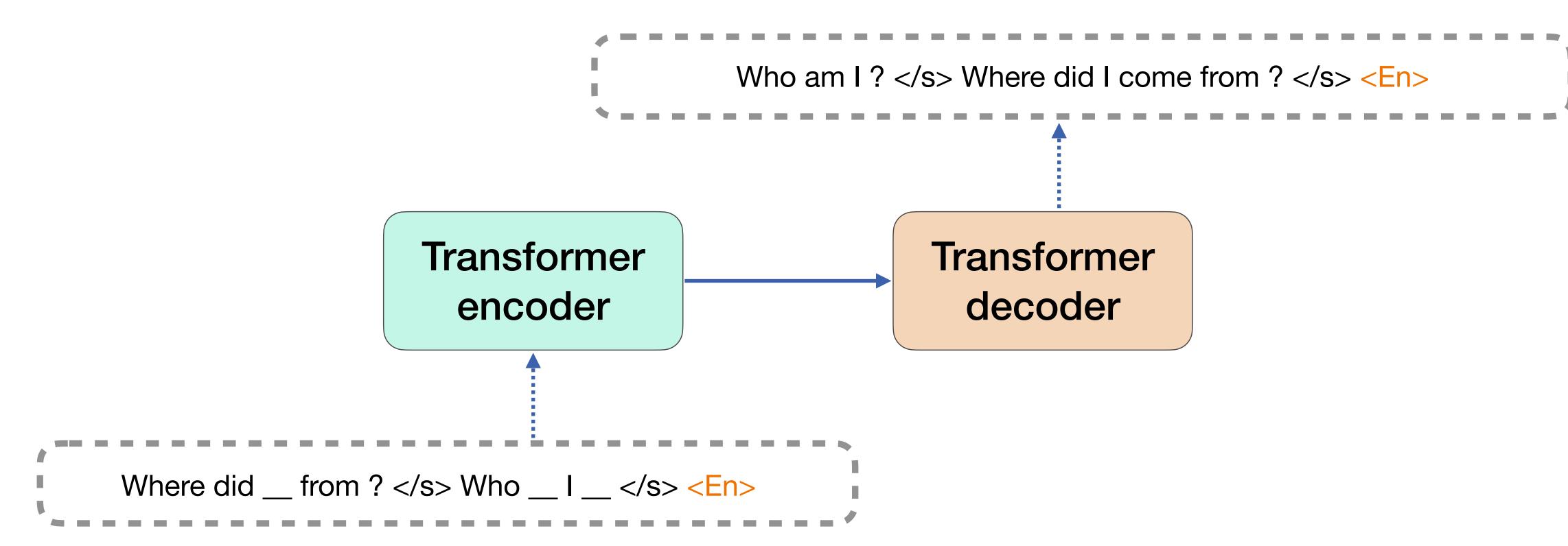


Image credit: Pre-trained models: Past, present and future [Han et al., 2021]

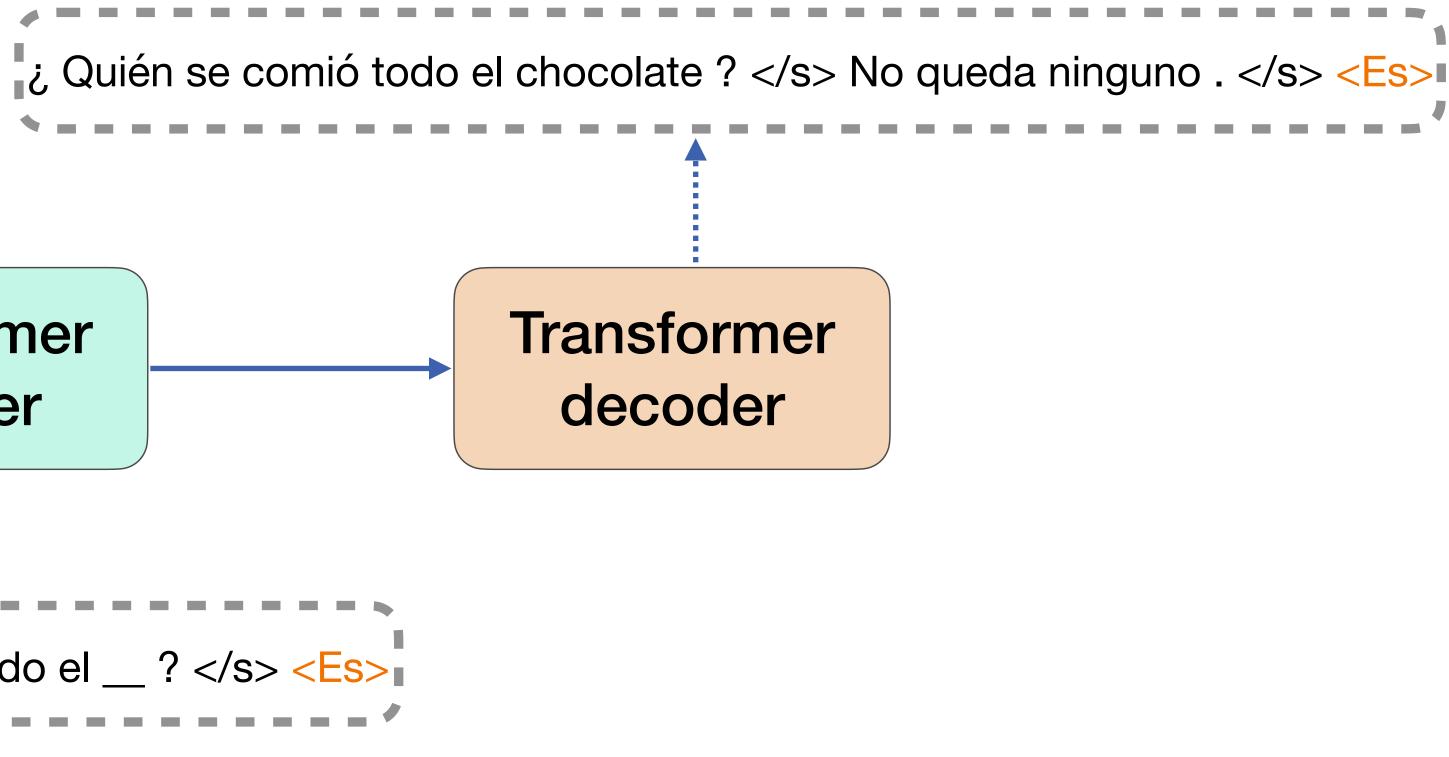
- Encoder-decoder Transformer
- Denoising autoencoding in multiple languages
- The model uses purely monolingual data during pre-training

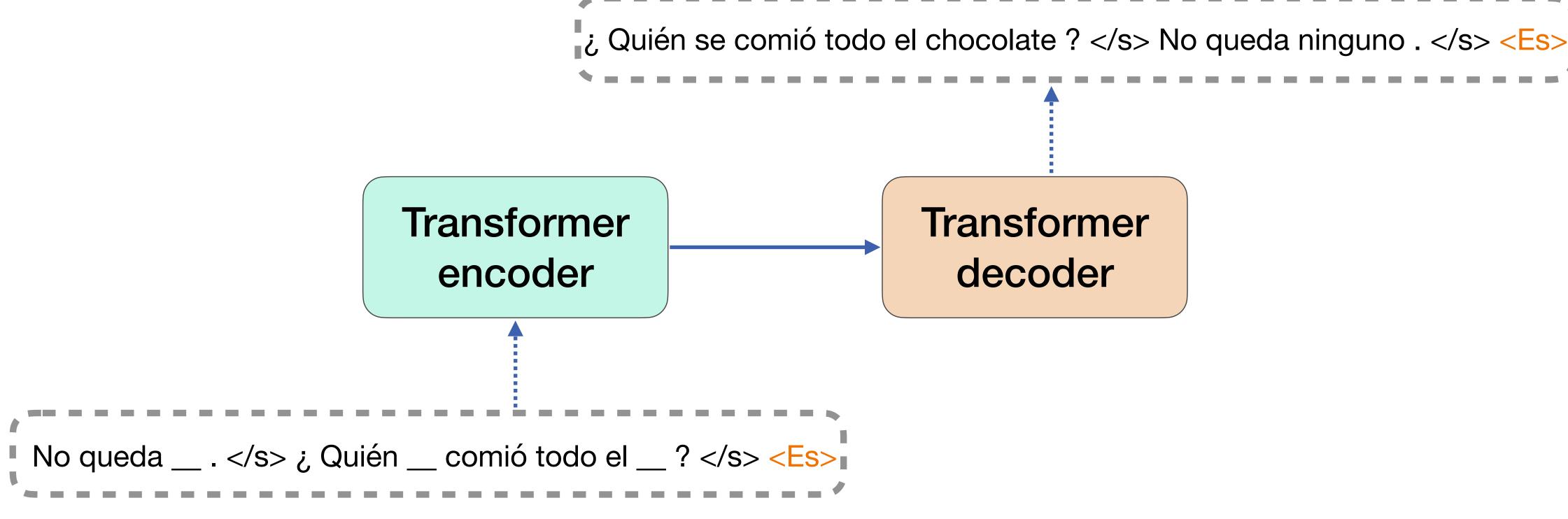
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension [Lewis et al., 2020] mBART: Multilingual Denoising Pre-training for Neural Machine Translation [Liu et al., 2020]



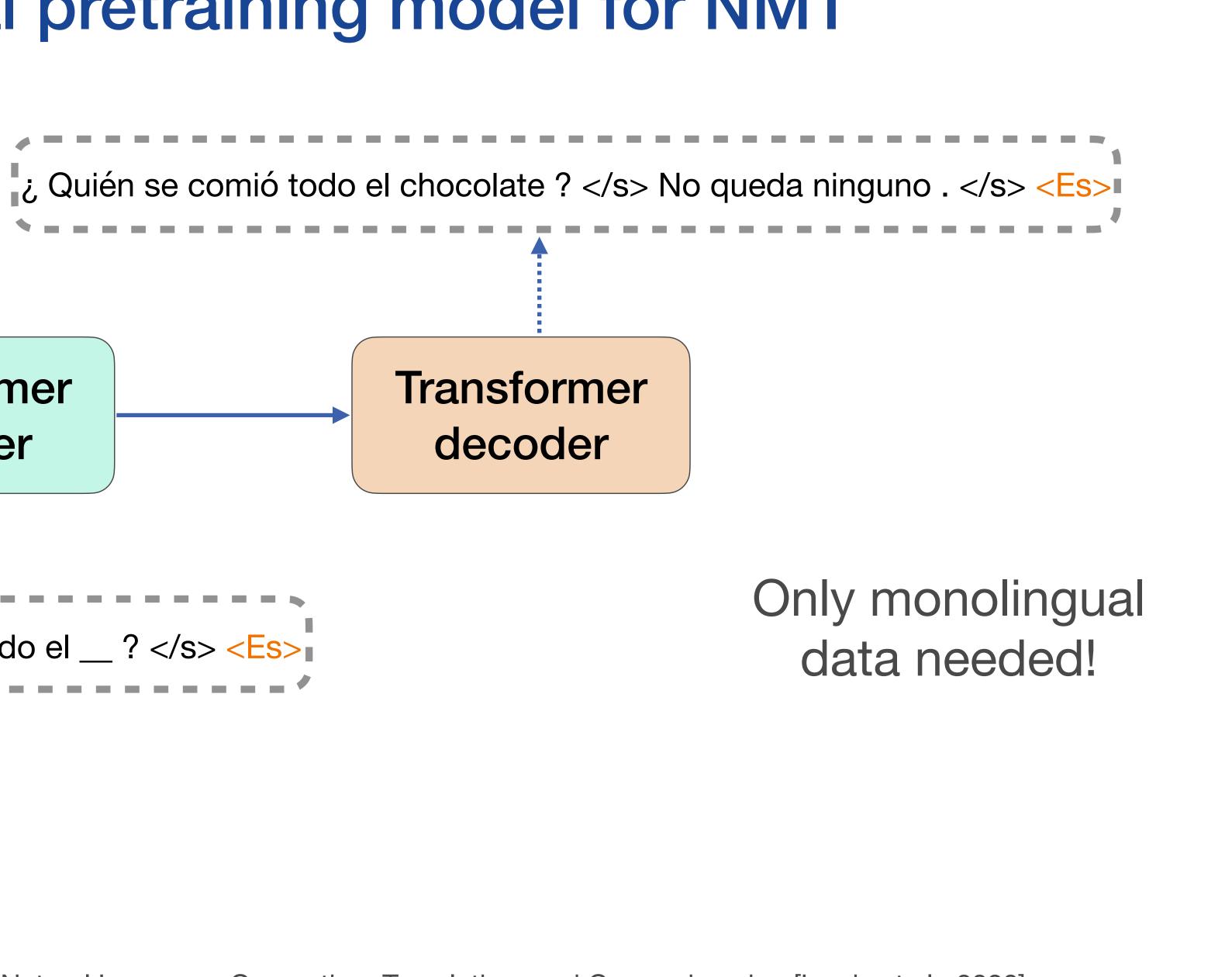


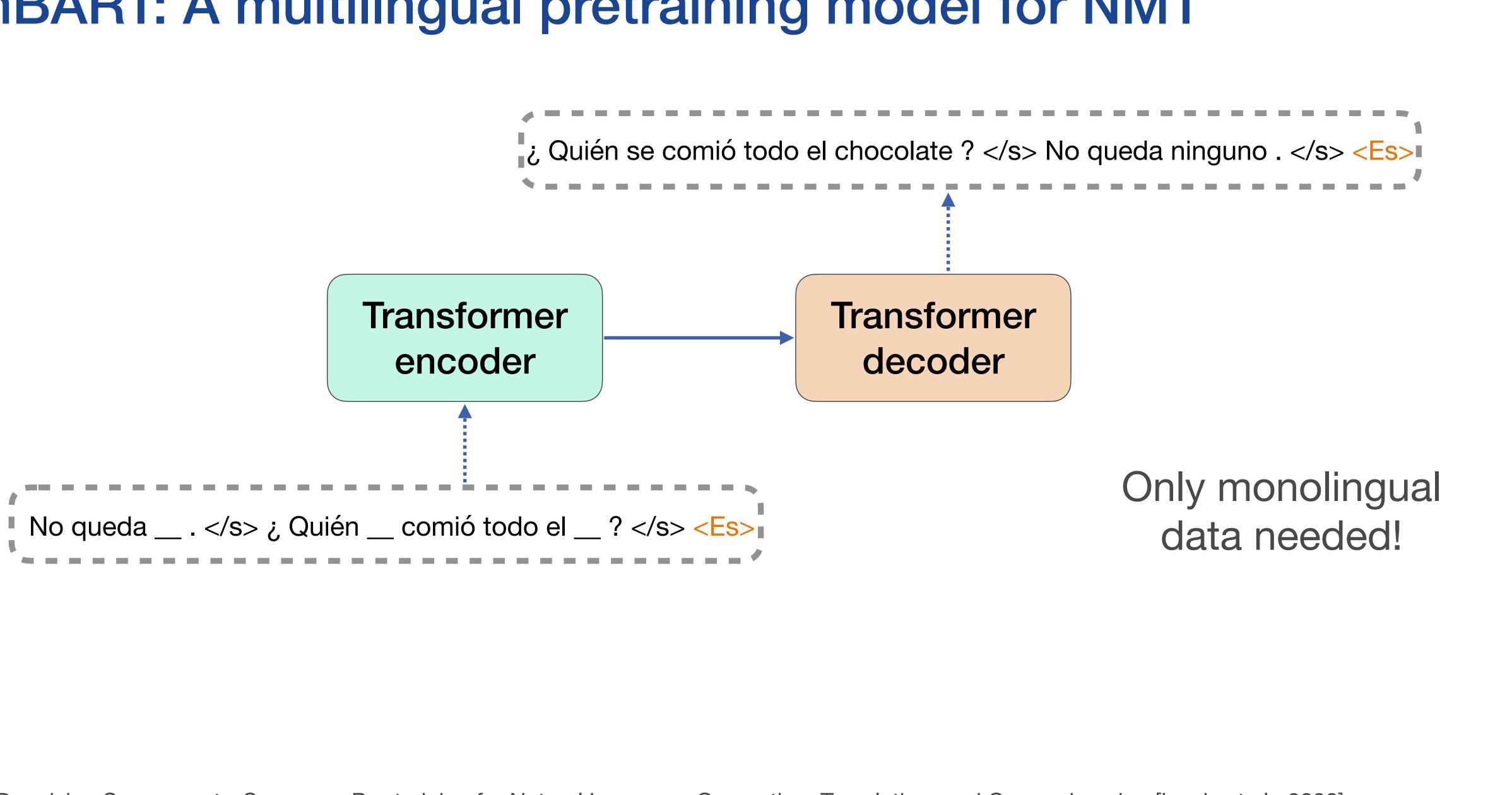
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension [Lewis et al., 2020] mBART: Multilingual Denoising Pre-training for Neural Machine Translation [Liu et al., 2020]





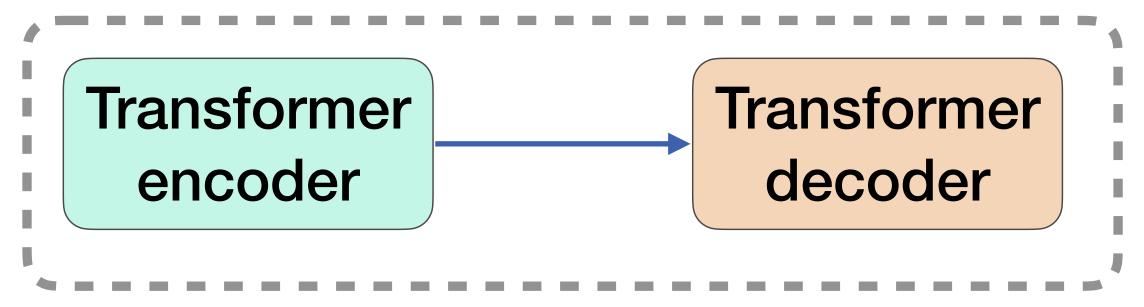
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension [Lewis et al., 2020] mBART: Multilingual Denoising Pre-training for Neural Machine Translation [Liu et al., 2020]





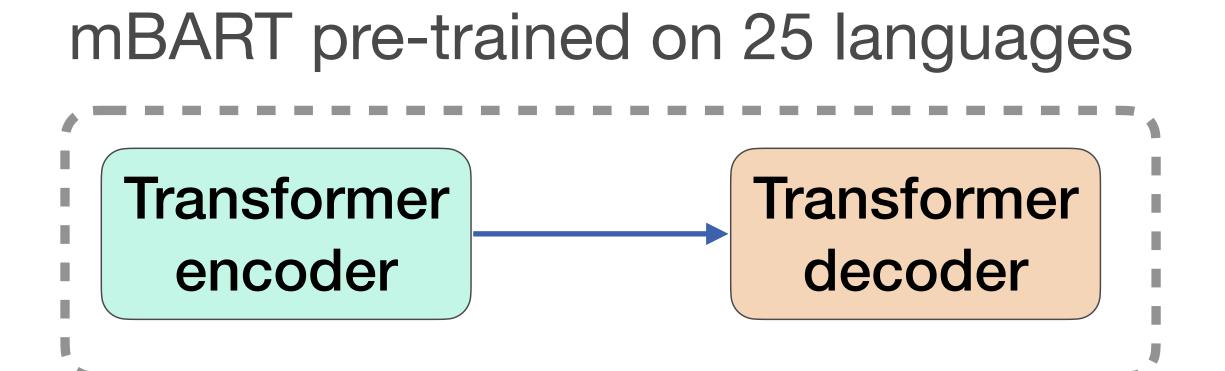
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension [Lewis et al., 2020] mBART: Multilingual Denoising Pre-training for Neural Machine Translation [Liu et al., 2020]

- After that, the encoder-decoder model is fine-tuned for MT
- This is not efficient



Fine-tune all parameters on En-Fr Fine-tune all parameters on En-De Fine-tune all parameters on Fr-En Fine-tune all parameters on De-En

- After that, the encoder-decoder model is fine-tuned for MT
- This is not efficient

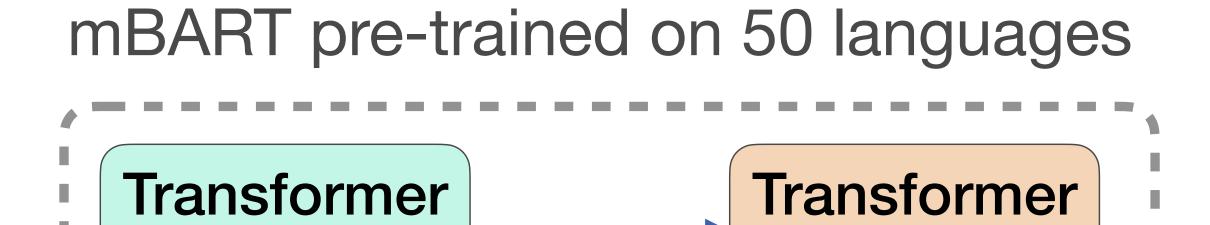


Idea: multilingually fine-tune mBART for machine translation

Fine-tune all parameters on En-Fr Fine-tune all parameters on En-De Fine-tune all parameters on Fr-En Fine-tune all parameters on De-En

Multilingual fine-tuning for NMT

• Improvement: fine-tune mBART in a multilingual manner



encoder

mBART-50: Multilingual Translation with Extensible Multilingual Pretraining and Finetuning [Tang et al., 2020] Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges [Arivazhagan et al., 2019]

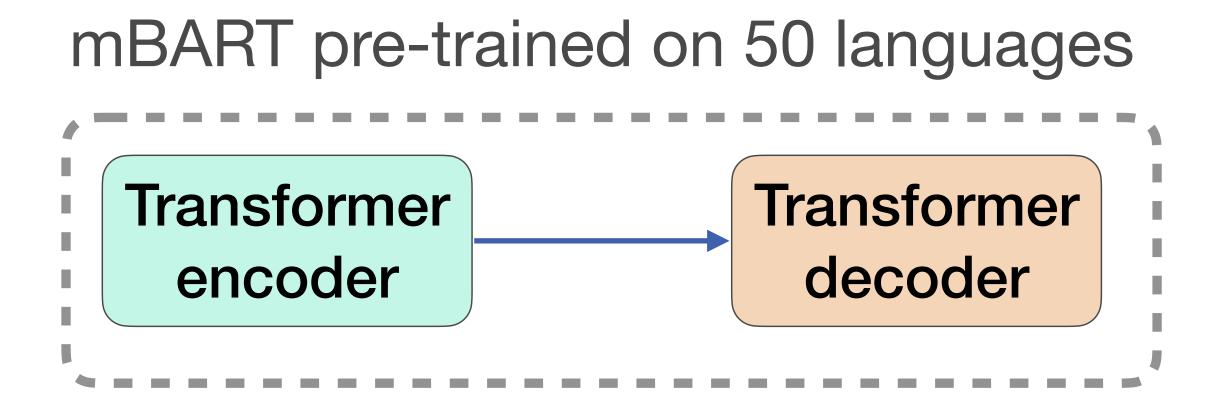
decoder

Fine-tune all parameters (one-to-many)

Fine-tune all parameters (many-to-one)

Multilingual fine-tuning for NMT

- Improvement: fine-tune mBART in a multilingual manner
- This step fails to model all languages equally well



mBART-50: Multilingual Translation with Extensible Multilingual Pretraining and Finetuning [Tang et al., 2020] Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges [Arivazhagan et al., 2019]

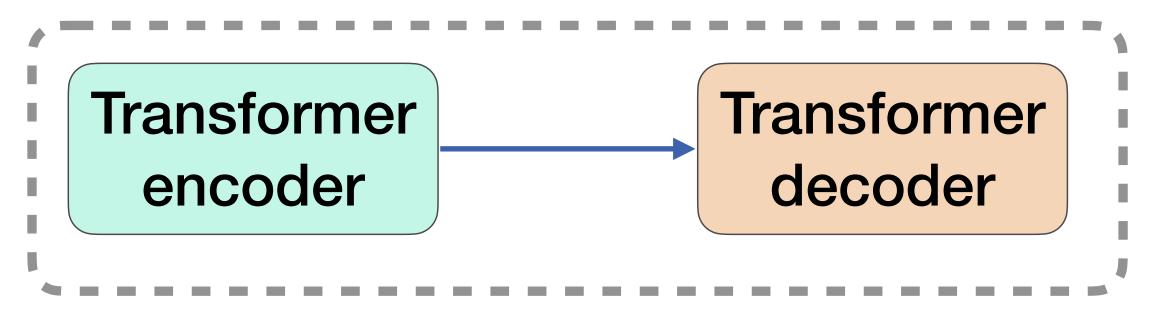
Fine-tune all parameters (one-to-many)

Fine-tune all parameters (many-to-one)

Multilingual fine-tuning for NMT

- Improvement: fine-tune mBART in a multilingual manner
- This step fails to model all languages equally well
- It is still required to fine-tune the entire model (680M params)

mBART pre-trained on 50 languages



mBART-50: Multilingual Translation with Extensible Multilingual Pretraining and Finetuning [Tang et al., 2020] Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges [Arivazhagan et al., 2019]

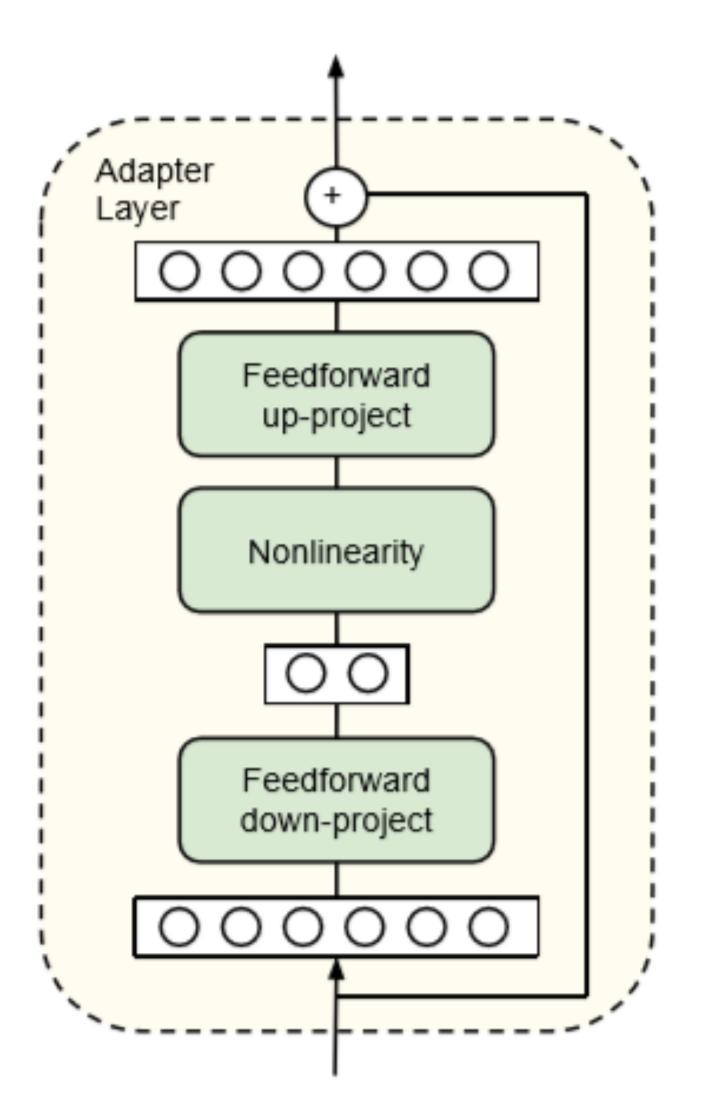
Fine-tune all parameters (one-to-many)

Fine-tune all parameters (many-to-one)

Efficient fine-tuning for NMT

- An efficient alternative: adapters
- Adapters are inserted in each Transformer layer
- The pretrained model remains fixed, only the adapters are fine-tuned for MT

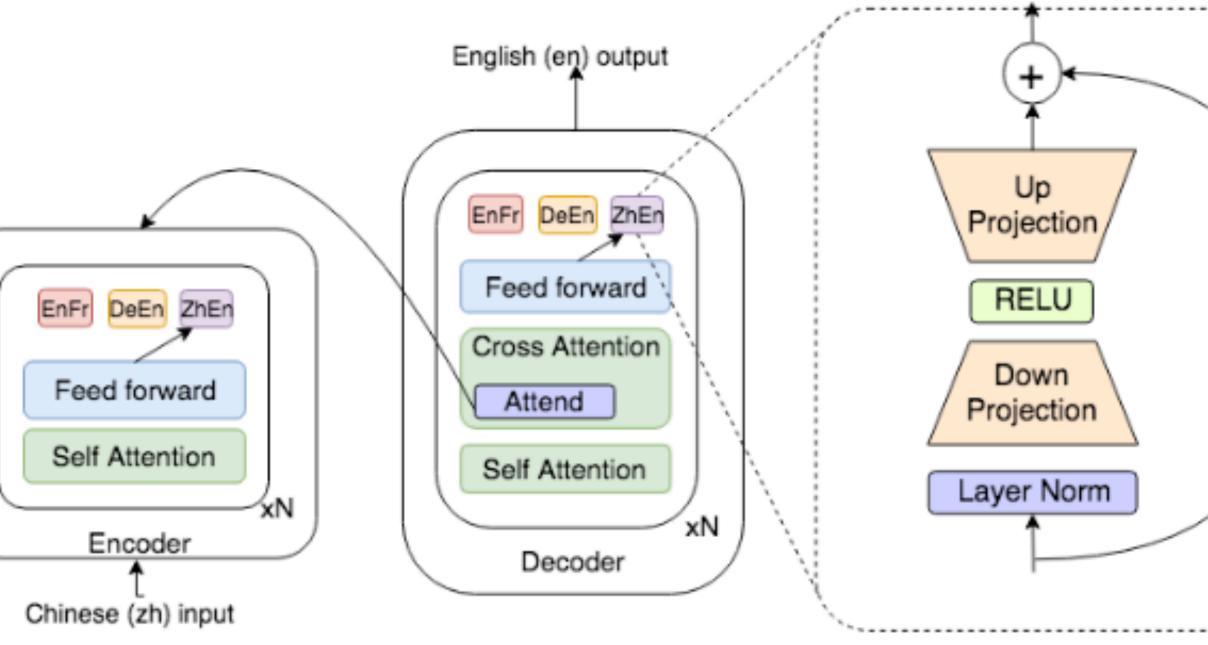
Learning multiple visual domains with residual adapters [Rebuffi et al., 2017] Parameter-Efficient Transfer Learning for NLP [Houlsby et al., 2019]



Efficient fine-tuning for NMT

- A new set of adapters can be trained for each language pair
- This works well for highresource languages
- But does not work for lowresource languages, because there is no sharing between related languages

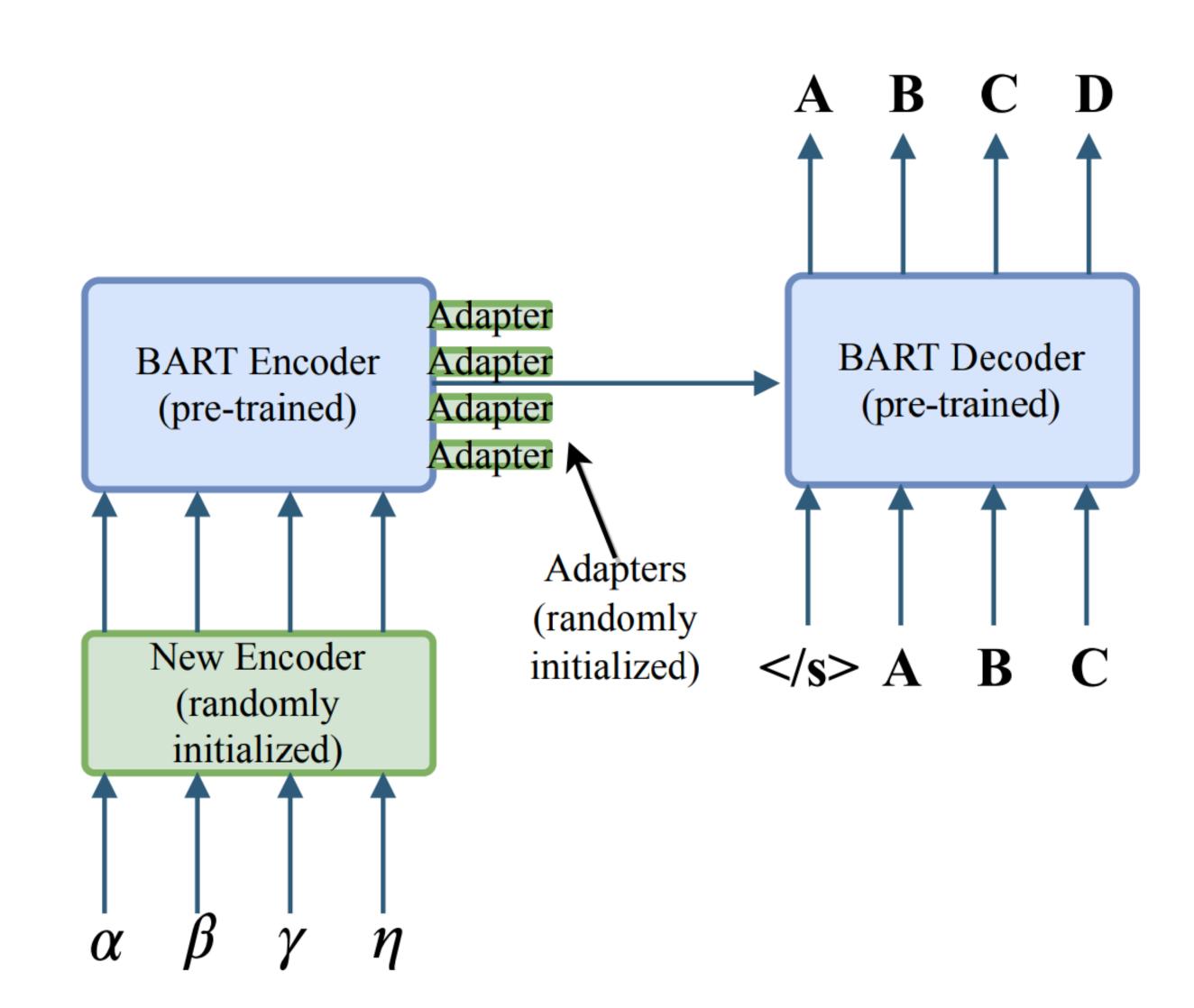
Simple, Scalable Adaptation for Neural Machine Translation [Bapna and Firat, 2019]



Efficient fine-tuning for NMT

- A new set of adapters can be trained for all language pairs
- This suffers from negative interference between unrelated languages

Recipes for Adapting Pre-trained Monolingual and Multilingual Models to Machine Translation [Cooper Stickland et al., 2021]



Approach

Language-family adapters for multilingual NMT

Idea: We encode the similarities between related languages with adapters trained on each language family.

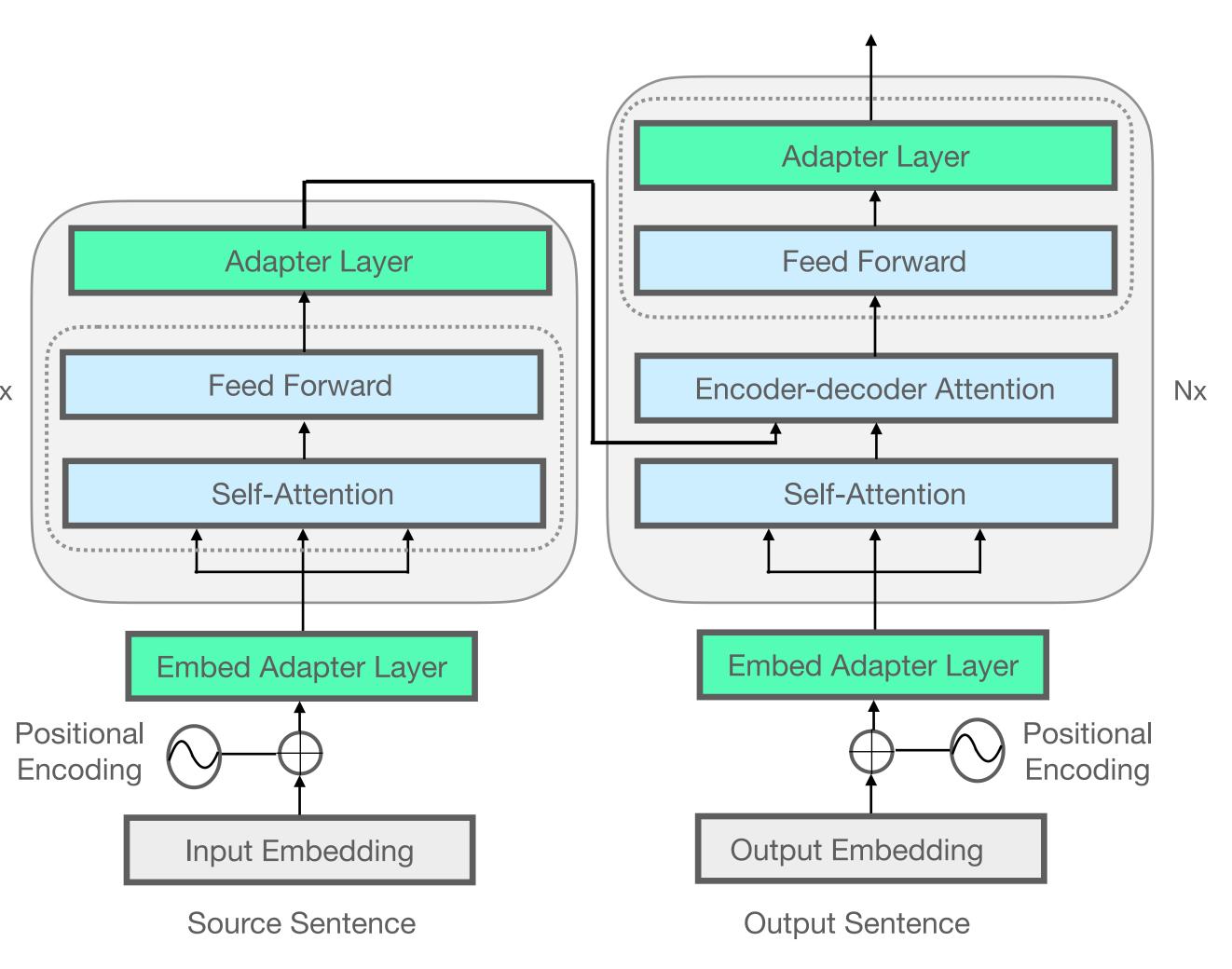
Language-family adapters for multilingual NMT

Our approach:

- Permits positive cross-lingual transfer, avoids negative interference • Outperforms other adapter baselines
- Improves MT scores for various mid- and low-resource language pairs

Language-family adapters for multilingual NMT

- We add a set of adapters for each language family after the FFN in each Transformer layer of mBART-50
- We add an embedding-layer adapter
- We fine-tune only the adapters for multilingual NMT



Results + Analysis

Data + baselines

- 17 language pairs from 3 language families (based on linguistic knowledge)
- Starred languages have not been used for mBART-50 pre-training

<u>Baselines</u>: lang-pair (one set of adapters per language pair), langagnostic (one set of adapters for all language pairs)

OPUS-100: Improving Massively Multilingual Neural Machine Translation and Zero-Shot Translation [Zhang et al., 2020] TED: When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation? [Qi et al., 2018]

Language (code)	Family	TED	OPUS-100
* Bulgarian (bg)	Balto-Slavic	174k	1M
Persian (fa)	Indo-Iranian	151k	1M
* Serbian (sr)	Balto-Slavic	137k	1M
Croatian (hr)	Balto-Slavic	122k	1M
Ukrainian (uk)	Balto-Slavic	108k	1M
Indonesian (id)	Austronesian	87k	1M
* Slovak (sk)	Balto-Slavic	61k	1M
Macedonian (mk)	Balto-Slavic	25k	1M
Slovenian (sl)	Balto-Slavic	20k	1M
Hindi (hi)	Indo-Iranian	19k	534k
Marathi (mr)	Indo-Iranian	10k	27k
* Kurdish (ku)	Indo-Iranian	10k	45k
* Bosnian (bs)	Balto-Slavic	6k	1M
* Malay (ms)	Austronesian	5k	1M
Bengali (bn)	Indo-Iranian	5k	1M
* Belarusian (be)	Balto-Slavic	5k	67k
* Filipino (fil)	Austronesian	3k	-

Main findings

Model	Balto-Slavic	Austronesian	Indo-Iranian	Average	
OPUS-100					
Lang-pair	22.8	25.8	13.7	20.3	
Lang-agnostic	20.0	25.2	13.4	18.6	Language-family adap
Lang-family	22.5	28.4	16.3	21.3	outperform the baselir
TED					both parallel datasets
Lang-pair	24.2	23.7	10.4	20.3	
Lang-agnostic	23.3	22.5	9.8	19.2	
Lang-family	24.6	22.7	12.7	20.7	

Test set BLEU scores when translating out of English (*en -> xx*).

Main findings

Model	Balto-Slavic	Austronesian	Indo-Iranian	Average	
OPUS-100					
Lang-pair	22.8	25.8	13.7	20.3	
Lang-agnostic	20.0	25.2	13.4	18.6	Language-family adap
Lang-family	22.5	28.4	16.3	21.3	outperform the baselin
TED					both parallel datasets
Lang-pair	24.2	23.7	10.4	20.3	
Lang-agnostic	23.3	22.5	9.8	19.2	
Lang-family	24.6	22.7	12.7	20.7	

The set ded below the sources when translating out of english (en - 2xx).

Method	Trainable para
mBART-50	
Lang-pair	
Lang-agnostic	
Lang-family	

ameters

- 100%
- 52.2%
- 8.4%
- 11.9%

Trade-off between performance and efficiency

Is the embedding-layer adapter helpful?

	BALTO- SLAVIC			AUSTRO- INDO- NESIAN IRANIAN						
	bg	hr	mk	be	id	ms	fa	ku	bn	AVG-16
LANG-AGNOSTIC w/o emb adapter LANG-AGNOSTIC with emb adapter (BASELINE) LANG-FAMILY w/o emb adapter LANG-FAMILY with emb adapter (OURS)	21.3 21.6 24.3 25.4	21.5 21.4 22.6 23.7	28.3 28.9 31.2 31.9	10.5 11.3 13.4 15.2	28.7 28.6 31.4 31.3	21.8 25.2	7.6 8.1 9.0 9.8	12.4 12.8 13.7 15.3	10.9 11.2 12.2 12.9	18.1 18.6 20.6 21.3

Test set BLEU scores when translating out of English ($en \rightarrow xx$) on OPUS-100.

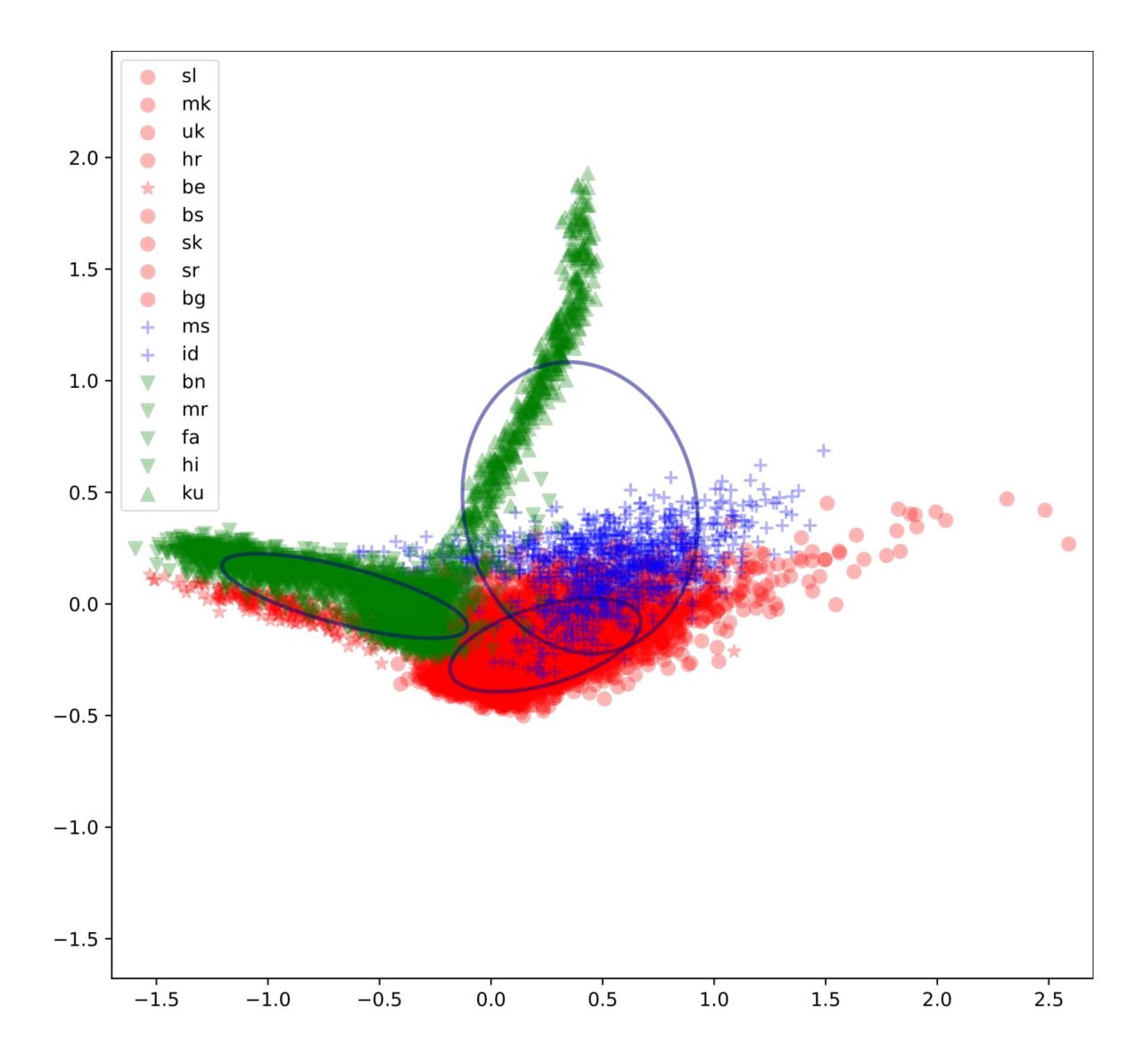
- Embedding-layer adapters consistenly improve translation scores while they only add +0.1% of the parameters of mBART-50
- They encode lexical-level information for the languages of interest

How to create language groups

Should we group languages based on linguistic knowledge or should we use an unsupervised, data-driven approach?

Unsupervised clustering to form language groups

- We used XLM-R to get representations of our data and clustered them using a Gaussian Mixture Model (GMM)
- The color shows the language family based on linguistic knowledge
- Clusters are mostly corresponding to the language families (except for be and ku)



Unsupervised clustering to form language groups

	Bulgarian	Indonesian	Persian	Belarusian	Kurdish	Average
Language family	25.4	31.3	9.8	15.2	15.3	21.3
GMM	23.9	29.7	9.2	14.9	14.3	19.4
Random	22.9	27.8	7.0	12.1	15.0	18.4

Evaluation of different methods to form language groups in *en->xx* (BLEU) on OPUS-100.

- Main takeaway: in the presence of linguistic knowledge, it is beneficial to use it create language groups
- If we do not have information on our data (or it is noisy), GMM clustering can be helpful

Conclusion

Conclusion

- languages using language-family adapters
- mid- and low-resource languages
- absence of linguistic knowledge bases

Code/Paper: will be available soon! **Questions?** achron@cis.lmu.de

We presented an approach that encodes the relations between

This is an effective and efficient method for translation from English to

Clustering languages together with a GMM might be helpful in the

Thanks!