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About manually transcribed data

Best speech recognition performance is achieved with models trained 

on in domain data using manually transcribed data

However, in early development stages of a new application

 Only limited amounts of in domain data is available

 And manual transcription may not be available (expensive, time consuming)

Hence, investigation of training / adaptation using uncertain transcriptions (obtained 

through automatic speech recognition) on a limited amount of in-domain data

Note: this concerns both acoustic and language models
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About privacy

Speech data contains a lot of personal information

 Identity of speakers can be recovered from speech signal

 Linguistic content can refer to personal data, such as person names, locations, 

telephone numbers, …

Hence the interest of sharing anonymized data, where

 Speech signal is transformed to sound as pronounced by another speaker 

(e.g., voice conversion)

 Lexical content is modified to remove personal information

But this impacts on language model training
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Overview

 Training models using uncertain transcriptions (i.e., from automatic speech recognition)

 Impact of anonymization process on training language models

Based on results from the COMPRISE project

 EU Horizon 2020 Research and Innovation Program

 COMPRISE: cost-effective, multilingual, privacy-driven voice-enabled services

[Dec. 2018 – Nov. 2021]

 https://www.compriseh2020.eu/

https://www.compriseh2020.eu/
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Training models 

using uncertain transcriptions
(from automatic speech recognition)
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Semi-supervised training of acoustic 
models

1/ Train initial acoustic models from labeled speech data

 i.e. speech data with associated correct transcriptions

 Whether from a different domain (domain mismatch) 

or from same domain (matched-domain)

2/ Automatically annotate (transcribe) speech data from the new domain

and use that data for fine tuning the acoustic model

several approaches are possible:

 Use directly the recognized words (provided by the speech recognition system)

 Or, apply an “error detection” module based on a deep neural network

and replace words tagged as “error” by “unknown word”
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Speech data

Two corpora are considered

 Librispeech (LS): English read speech, clean condition, 100 hours

 Verbmobil (VM): conversational speech corpus, English speech

Experiments

 Initial model

 Domain mismatch: trained on Librispeech ( 100 hours)

 Matched-domain: trained on a subset of Verbmobil corpus ( 5 hours) 

 Semi-supervised training

 Using another subset of Verbmobil corpus ( 20 hours)

 Evaluation

 Word error rates computed on a Verbmobil test set ( 3 hours)
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Evaluation of initial acoustic models

Word error rates computed on a Verbmobil test set ( 3 hours)

Better performance when training on matched domain data

(even if lower amount of data)

Init: Librispeech 100 h

(domain mismatch)

Init: Seed Verbmobil 5 h

(matched domain)

Initial model LS 100 h 41.0 % VM 5 h 37.8 %
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Evaluation of semi-supervised training

Adaptation using a subset of Verbmobil corpus (20 hours, non-transcribed)

Better performance with error detection module (thus ignoring a few words)

Init: Librispeech 100 h

(domain mismatch)

Init: Seed Verbmobil 5 h

(matched domain)

Initial model LS 100 h 41.0 % VM 5 h 37.8 %

Semi-supervised training 

using speech recognition 

hypotheses

38.0 % 33.7 %

Semi-supervised training 

using speech recognition 

output & error detection

37.6 % 32.0 %
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Comparison with oracle performance

Init: Librispeech 100 h

(domain mismatch)

Init: Seed Verbmobil 5 h

(matched domain)

Initial model LS 100 h 41.0 % VM 5 h 37.8 %

Semi-supervised training 

using speech recognition 

hypotheses

38.0 % 33.7 %

Semi-supervised training 

using speech recognition 

output & error detection

37.6 % 32.0 %

Oracle (i.e., using correct 

transcriptions of 

adaptation data)

LS 100 h

+ VM   20 h
30.2 %

VM   5 h

+ VM 20 h
26.4 %
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Language models

N-gram based language models

 Used in speech recognition since many years

 Provide the probability of a word knowing the N-1 previous words

 A good compromise is N = 3

Neural network based language models

 More recent approaches

 Leads to better performance, especially when large amounts of training data are 

available 
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Training language models

Conventional training

 Relies on text data

 From written texts

 Manual transcription of speech data

Training from speech recognition hypotheses

 Problem of speech recognition errors (some words are incorrect)

This is taken into account in the training process, by considering alternate hypotheses
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Language models

Word error rates computed on a Verbmobil test set

Verbmobil

English test data

3-gram trained on

Verbmobil training labeled data (5 h)
39.7 %

Neural network LM trained on

Verbmobil labeled data (5 h)

& Verbmobil unlabeled data (20 h)

36.1 %

Oracle ::  Neural network LM trained on

Verbmobil labeled data (5 h)

& Verbmobil labeled data (20 h)

32.9 %
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Impact of anonymization process 

on training language models

Language models for speech recognition
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Automatic speech recognition 
and privacy

Speech recognition as local processing on terminal

Sharing of anonymized data (for training models) in cloud

Speech recognition, 

Dialog management

Anonymization of 

speech data
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speech data
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models
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Privacy

Removing of personal information, such as person names, organizations, 

locations, …

Original Hi, Mister Miller, the Lufthansa flight from 

Frankfurt Airport to Rome is leaving at six pm. 



14 June 2022 Language models for speech recognition18

Privacy
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Privacy

Removing of personal information, such as person names, organizations, 

locations, …

Original Hi, Mister Miller, the Lufthansa flight from 

Frankfurt Airport to Rome is leaving at six pm. 

Typed place 

holder

Hi, Mister PER, the ORG flight from LOC to LOC

is leaving at TIME.

Entity 

replacement

Hi, Mister John, the Bosch flight from New York to 

Berlin is leaving at twelve pm.
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Language models

Three models are considered

 N-gram word-based

 Provide probability of a word knowing previous words

 N-gram class-based

 Similar to previous one, but considers a few classes: person-names, organizations, 

locations, …

 And takes into account the probability of the words inside classes

 Neural network based
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Language models

Evaluation on original data: performance expressed as word error rate

 Training on original data  Neural-network based model is the best

Training on 

original data

3-gram word-based 28.8 %

3-gram class-based 29.3 %

Neural network LM

(LSTM-based)
27.6 %
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Language models

Evaluation on original data: performance expressed as word error rate

 Training on original data  Neural-network based model is the best

 Training on anonymized data  Best results obtained with the class-based model

Training on

anonymized data

Training on 

original data

3-gram word-based 32.3 % 28.8 %

3-gram class-based 30.2 % 29.3 %

Neural network LM

(LSTM-based)
30.5 % 27.6 %
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Adaptation using a small amount of 
original data
Evaluation on original data: performance expressed as word error rate

 With adaptation on small amount of original (i.e. NON-anonymized data) 

 Best results still obtained with the class-based model

Training on

anonymized data

+ adaptation 

on small amount

of original data

Training on 

original data

3-gram word-based 32.3 % 31.2 % 28.8 %

3-gram class-based 30.2 % 29.8 % 29.3 %

Neural network LM

(LSTM-based)
30.5 % 29.9 % 27.6 %
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Conclusion

Language models for speech recognition
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Conclusion

Training / adapting for targeted application

 Better to have a limited amount of transcribed data from the targeted application (in-

domain data) rather than just training on a larger generic dataset (domain mismatch)

 Semi-supervised training improves the performance of the speech recognition models, 

and benefits from the use of a module to detect “speech recognition errors” that are later 

ignored in training

Dealing with privacy transformed (anonymized) data

 Anonymization modifies named entities (such as person names, locations, telephone 

numbers, …). This impacts the estimation of the language models

 Adaptation of language models using a limited amount of original (non anonymized) 

data improves the performance
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